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Outline

Compositional semantics
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Compositional semantics

Principle of compositionality

The meaning of a complex expression is determined by the meanings of
its constituents and by the rules used to combine them.
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The meaning of a complex expression is determined by the meanings of
its constituents and by the rules used to combine them.
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Compositional semantics

Principle of compositionality

The meaning of a complex expression is determined by the meanings of
its constituents and by the rules used to combine them.

Phrase Sentence
words structure phrases structure
lexical
: syntax
semantics
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Semantic composition

What is the meaning of “carnivorous plants digest slowly”?
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T

NP VP
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Adj N VP Adv

carnivorous plants \Y slowly

digest
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Issues with semantic composition

> Similar syntactic structures may have different meanings
= jt runs
= jt rains, it snows (here, it is a )

> Different syntactic structures may have the same meaning (e.g., passive constructions)
= Eve ate the apple.

= The apple was eaten by Eve.

> Not all phrases are interpreted compositionally (e.g., )
= Kick the bucket
= pull someone’s leg
but the compositional interpretation is still possible.

X
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Issues with semantic composition

» Additional meaning can arise through composition (e.g.,
= fast car
= fast algorithm
= begin a book

> Meaning transfers (e.g., )
= he put a grape into his mouth and swallowed it whole
= he swallowed her story whole

> Additional connotations can arise through composition
= [ can’t buy this story

> Recursive composition

X
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Issues with semantic composition
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“Of course I care about how you imagined I tboug/)t
you perceived I wanted you to feel.”
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Issues with semantic composition

> Recursive composition
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A defining property of
natural languages is
productivity:
they license a theoretically
Infinite set of possible
expressions.

Compositionality and
recursion allow for
productivity.



Cautionary notes

> The meaning of the whole is constructed from its parts,
and the meaning of the parts is derived from the whole.

» Compositionality is a matter of degree rather than a binary
notion.

carnivorous plants take advantage kick the bucket

>

fully compositional non-compositional
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Modelling compositional semantics

1. Compositional distributional semantics

» composition is modelled in a vector space
> unsupervised
> general purpose representations

2. Compositional semantics with neural networks
> (typically) supervised
> (typically) task-specific representations
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Outline

Compositional distributional semantics
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Compositional distributional semantics

it was authentic scrumpy, rather sharp and very strong
we could taste a famous local product — scrumpy
spending hours in the pub drinking scrumpy

X
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Compositional distributional semantics

it was authentic scrumpy, rather sharp and very strong
we could taste a famous local product — scrumpy
spending hours in the pub drinking scrumpy

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?
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Compositional distributional semantics

it was authentic scrumpy, rather sharp and very strong
we could taste a famous local product — scrumpy
spending hours in the pub drinking scrumpy

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?

her old dog is turning 14 this year!
you see your old dog lumber slowly to the food bowl
in an old dog, behaviour changes can appear suddenly
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Compositional distributional semantics

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?

> QGiven a finite vocabulary, natural languages licence an infinite amount of sentences.
> So it is impossible to learn vector representations for all sentences.

X
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Compositional distributional semantics

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?

> QGiven a finite vocabulary, natural languages licence an infinite amount of sentences.
> So it is impossible to learn vector representations for all sentences.

= But we can still use distributional word representations and learn to perform
semantic composition in distributional space.
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Compositional distributional semantics

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?

> QGiven a finite vocabulary, natural languages licence an infinite amount of sentences.
> So it is impossible to learn vector representations for all sentences.

= But we can still use distributional word representations and learn to perform
semantic composition in distributional space.

vector mixture lexical function
models models
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Vector mixture models

Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p=f(u,v,R,K)
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Vector mixture models

Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p=f(u,v,R )
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Vector mixture models

Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p=f(u,v )
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Vector mixture models

Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

Constraint: p lies in the same n-dimensional space as u and v.
Assumption: all syntactic types are similar enough to have the same dimensionality.
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Vector mixture models

Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

Constraint: p lies in the same n-dimensional space as u and v.
Assumption: all syntactic types are similar enough to have the same dimensionality.

p=uUu+V additive composition function

p=u®v multiplicative composition function

X
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Additive and multiplicative models

old + dog
s
: | dog
additive multiplicative
dog cat old | old +dog old + cat | old ® dog old ©® cat
runs 1 4 0 1 4 0 0
barks | 5 0 7 12 7 35 0
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Additive and multiplicative models

> The additive and the multiplicative model are symmetric (commutative):
they do not take word order or syntax into account.
= John hit the ball = The ball hit John

> Correlate with human similarity judgments about adjective-noun, noun-noun,
verb-noun and noun-verb pairs

> More suitable for modelling content words, would not apply well to function

words:
= some dogs, lice and dogs, lice on dogs
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Lexical function models

p=f(U,v, R )
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Lexical function models

| ] L] ] L] | ]
A AAlaAa alal a AvYa - aa ajlara Aala a ] - Ara AAYa a AATaAala Ala
\J \J \ \/ \ \ 4

p=f(U,v, R )

od0

Distinguish between:

> words whose meaning is directly determined
by their distributional profile, e.g. nouns

» words that act as functions transforming the
distributional profile of other words, e.g.,
adjectives, adverbs

barks

p=f(U,v,ADJ)= Uv

0.0 02 04 0.6 08 1.0

nuns
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Lexical function models

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-
noun constructions in semantic space. In Proceedings of EMNLP,

Adjectives modelled as that are applied to nouns: old dog = old(dog)
> Adjectives are parameter matrices (Aold, Afurry, etc.)

> Nouns are vectors (house, dog, etc.)

» Composition is a linear transformation: old dog = Ao/d X dog.

X
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Learning adjective matrices

For each adjective, learn a parameter matrix that allows to predict adjective-noun
phrase vectors.

X Y

Training set house old house
dog old dog
car old car
cat old cat
toy old toy

Test set elephant old elephant
mercedes old mercedes

X
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Learning adjective matrices

1. Obtain a distributional vector n for each noun n; In the vocabulary using a
conventional DSM.

2. Collective all adjective-noun pairs (a;, nj) from the corpus.

3. Obtain a distributional phrase vector P; for each pair (a,, nj) from the same corpus

using a conventional DSM —treating the phrase a; n;as a single word.

4. The set of tuples {(nj, pl-j) } jrepresents a dataset D(a;) for the adjective a..

5. Learn matrix A, from D (a;) using linear regression. Minimise the squared error loss:

L(A) = 2 Py — Ainj”2
JED(a))

X
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Verbs as lexical functions

Verbs too can modelled as lexical functions that are applied to their arguments.

They are represented as tensors whose order is determined by the
of the verb (i.e., how many and what type of arguments the verb takes).

> Intransitive verbs take a subject as their only argument

dogs bark  Vpark X dogs

modelled as a matrix (second-order tensor)

> Transitive verbs take a subject and an object

dogs eat meat  (Veat X meat) x dogs

modelled as a third-order tensor

X
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Modelling compositional semantics

1. Compositional distributional semantics

» composition is modelled in a vector space
> unsupervised learning
> general purpose representations

2. Compositional semantics with neural networks

> (typically) supervised learning
> (typically) task-specific representations
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Modelling compositional semantics

1. Compositional distributional semantics

» composition is modelled in a vector space
> unsupervised learning
> general purpose representations

2. Compositional semantics with neural networks

> (typically) supervised learning
> (typically) task-specific representations

Task: sentiment classification (Practical 2)
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Outline

Compositional semantics with neural networks

X
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Compositional semantics with NNs

1. Learn sentence (or phrase) representations

2. Learn to make task-specific predictions based on the
sentence (or phrase) representation

X
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Compositional semantics with NNs

1. Learn sentence (or phrase) representations

X
NLP1 2020: Compositional semantics and sentence representations 39



Task: Sentiment classification

0. very negative
Darkly funny and frequently insightful

3. positive

4. very positive
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Task: Sentiment classification

0. very negative
funny and frequently insightful

3. positive

4. very positive
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Task: Sentiment classification

0. very negative
funny and frequently insightful

3. positive

4. very positive
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Task: Sentiment classification

0. very negative
Darkly funny and frequently insightful

3. positive

4. very positive
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Task: Sentiment classification

0. very negative
Darkly funny frequently insightful

3. positive

4. very positive
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Task: Sentiment classification

Darkly funny and frequently insightful

X
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Task-specific representations

exhilarating

funn
y beautifully acted

black and white

breathtaking

‘ almost unbearably morbid
boring

‘ ‘extreme unease

drowned by in boredom
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Dataset: Stanford Sentiment Treebank

12K movie reviews

> one sentence per review

> sentence-level sentiment score o)
> binary syntactic tree

> phrase-level sentiment scores

() © @ ()

and frequently insightful

Darkly funny
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Compositional semantics with NNs

2. Learn to make task-specific predictions based on the
sentence (or phrase) representation
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Compositional semantics with NNs

Models

1. Bag of Words (BOW)

2. Continuous Bag of Words (CBOW)

3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW with pre-trained word embeddings
5. LSTM

6. Tree-LSTM

X
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Bag of Words

> Additive model: does not take word order or syntax into account
» Task-specific word representations with fixed dimensionality (d = 5)

> Dimensions of vector space are explicit, interpretable

X
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Bag of Words

Sum word embeddings, add bias

4 N
S

loved © OO0 OO

this LQ..C.

movie © 00O O

biash ©®©©®® ® ®

>x +b [ o ]

argmax 3
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Bag of Words

Sum word embeddings, add bias

4 N
S v

loved © OO0 OO

Embeddings

this (0 OO0 6 randomly initialised

movie © 00O O

biash ©®©©®® ® ®

>x +b [ o ]

argmax 3

NLP1 2020: Compositional semantics and sentence representations 52 Credits: Jasmijn Bastings (UvA NLP1 2018)



Bag of Words

Sum word embeddings, add bias

4 N
S v

loved © OO0 OO

this LQ..C.J

movie © 00O O

biash ©®©©®® ® ®

What will be the role

2% tb [ ¢ ] of the bias vector?

argmax 3
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Bag of Words

this 0.0, 0.1, 0.1, 0.1, 0.0]
movie [0.0, 0.1, 0.1, 0.2, 0.1]
is 0.0, 0.1, 0.0, 0.0, 0.0]
stupid [0.9, 0.5, 0.1, 0.0, 0.0]

argmax: 0 (very negative)

X
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Continuous Bag of Words

> Additive model: does not take word order or syntax into account
> Task-specific word representations of arbitrary dimensionality
> Dimensions of vector space are not interpretable

» Prediction can be traced back to the sentence vector dimensions

X
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Continuous Bag of Words

Sum word embeddings, project to 5D using W, add bias: W (3 x)) + b

y

loved ©0000O0CODOLOGO

ths ©O000000O6O6O

movie ©O0000O0OLDOLDOGO

©
Sx, (0000000000 zxtooooonooooo]
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Continuous Bag of Words

[ : X0
Concatenation [. 000000 .]

O

o000 0| (00000 (00000 [00000]

I loved this movie
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Continuous Bag of Words

[ : X0
Concatenation [. 000000 0]

o

o000 0| (00000 (00000 [00000]

I loved this movie

Variable sentence vector size, dependent on sentence length
> Not very sensible conceptually
= sentences in a different vector space than words
= one vector space for each sentence length in the dataset
» Hardly practicable
= what size should the transformation matrix be?
= vector size can grow very large
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Deep Continuous Bag of Words

» Additive model: does not take word order or syntax into account
» Task-specific word representations of arbitrary dimensionality
> Dimensions of vector space are not interpretable

> More layers and non-linear transformations: prediction cannot be easily
traced back

X
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Deep Continuous Bag of Words

tanh( W' tanh(W (I x) +b)+b") +

(o000 00000@® | .
oved (OO OOOOOOOO t
| tanh [ @O O 00O O |
this (0000000000 Wi
move 0000000000 tanh [ 00 © ©© © © |
wh
sx, 000000000 5|0 000000000
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Deep CBOW + pre-trained embeddings

» Additive model: does not take word order or syntax into account

> Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)
- : hot updated during training
- . updated with task-specific learning signal (specialised)

> Dimensions of vector space are not interpretable

> Multiple layers and non-linear transformations: prediction cannot be easily
traced back

X
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Deep CBOW + pre-trained embeddings

» Additive model: does not take word order or syntax into account

> Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)
- : hot updated during training

- . updated with task-specific learning signal (specialised)
> Dimensions of vector space are not interpretable

> Multiple layers and non-linear transformations: prediction cannot be easily

traced back
A
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Deep CBOW + pre-trained embeddings

tanh( W' tanh(W (I x) +b)+b') +

ey | °s)
oved (OO OOOOOOOO 1
. tanh[‘.“‘.‘]
ths O0O0O0O0OO0O6DO6LO6O W'T
movie (0000000000 tanh [ @O O ©© 0 0|
wi
’x (000000 e il >x (0000000000
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Training feedforward models

Train networks using Stochastic Gradient Descent (SGD):

1. Sample a training example

Forward pass: compute network activations and obtain an output vector
Loss: compare output vector with ground-truth label

Compute gradient of loss w.r.t (trainable) network parameters

Sl S

Backpropagation: update parameters taking a step in the opposite direction of
the gradient

X
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Model predictions

output vector (/ogits)

o=1[-0.1, 0.1, 0.1, 2.4, 0.2]

X
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Model predictions

output vector (/ogits) class prediction

argmax(o)

o=1[-0.1, 0.1, 0.1, 2.4, 0.2] 3

X
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Model predictions

output vector (/ogits)

o=1[-0.1, 0.1, 0.1, 2.4, 0.2]

exp(0;)

softmax(o); =

X, exp(0))

\4

y = [0.06, 0.07, 0.07, 0.72, 0.08]

X
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Model predictions

output vector (/ogits)

o=1[-0.1, 0.1, 0.1, 2.4, 0.2]

exp(0;)

softmax(o); =

X, exp(0))

\4

y = [0.06, 0.07, 0.07, 0.72, 0.08]

y=[0, 0, 0, 1, 0]

X
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Model predictions

output vector (/ogits)

o=1[-0.1, 0.1, 0.1, 2.4, 0.2]

exp(0;)
X, exp(0))

softmax(o); =

\
Cross Entropy loss

y = [0.06, 0.07, 0.07, 0.72, 0.08]

> _Zyilogyi = _logj\}argmax(o)
y=[0, 0 0 1 0] i

X
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Recurrent neural networks

X
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Recurrent neural networks

> Networks that contain a cycle within their connections
= The value of a network unit is dependent on earlier outputs

> Naturally handle sequential input: process one element at a time

> Drop history independence assumption
= Capture and exploit the temporal nature of language
= Capture word order (and syntactic structure)

X
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Recurrent neural networks

one to one one to many many to one many to many many to many
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

x, = Embedding(w,)
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

x, = Embedding(w,)

X
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Darkly funny and frequently insightful
X1 Xy X3 Xy X5

hy = f(xy, hy)
hy = f(xy, f(x1, hy)) = f(x5, 1)
hy = f(x3, (X, (X1, ) = f(x3, hy)
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

» Consist of a single cell, the “RNN
cell”, that is fed input elements one at
a time (one for each timestep)

C Yt )
» Hidden layer from previous timestep
provides a form of memory of \ v /
preceding context % - S

= encodes earlier processing m
= informs the decisions to be made at

. . . hy_ X
later points in time ( t1 D t )

> No fixed limit on the length of the
preceding context
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

h = f(Uh,_, + Wx) \ ' /

C Ny )
W\
C N1 ) C Xt )
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

h = f(Uh,_, + Wx) \ ' /

v, = g(Vh,) ( 2 )
)
C N1 ) C Xt )
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

X < (X5 --05X,)

hy < 0 C Vi )
for i — 1 to n do \ y /
hl‘ =f(Uht_1 + W.xt) h
Vi = g(Vht) - t /
return y W\
C N1 ) C Xt )
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

X < (X[, .05 X,)
hy < 0 N
for i < 1 to n do

C Yo D M3 )
h, = f(Uh,_, + Wx) N W\
y, = 8(Vh,) y Cm . T S
return y N\ v U W

timesteps
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Simple recurrent neural networks

Elman, J. L. (1990). Finding structure in time. Cognitive science.

class prediction

softmax / argmax

X < (X[, .05 X,)
hy < 0 N
for i < 1 to n do

C Yo D M3 )
h, = f(Uh,_, + Wx) N W\
y, = 8(Vh,) y Cm . T S
return y N\ v U W

timesteps

NLP1 2020: Compositional semantics and sentence representations 82 Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.



Simple RNN: vanishing gradient

Simple RNNs are hard to train because of the problem:
> during backpropagation, gradients can quickly become small

> as they repeatedly go through multiplications and non-linear functions
(e.g. sigmoid or tanh)

C & )
C Y3 )
C B ) vl
C Yo ) Chy
C g ) Y > "
C 7z y (2 ) C % )

v
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LSTM: long short-term memory

Hochreiter and Schmidhuber (1997). Long short-term memory. Neural Computation.

> Designed to maintain relevant context over time
= learn to forget information that is no longer needed
= learn to remember information required for future decisions

> Deals well with long-term dependencies in the input sequence
> With respect to a Simple RNN
= add an explicit context layer (cell state) to the architecture

= make use of gates to control the flow of information

» Consists of a single cell, the “LSTM cell”, that is repeatedly applied to the
Input elements

X
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LSTM: long short-term memory

Hochreiter and Schmidhuber (1997). Long short-term memory. Neural Computation.

The LSTM cell

6
i TW»P@—@ L|
A $

tanh

i
\
\*

1
) ) &)
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http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: forget gate

Delete information from the cell state that is no longer needed.

f=0c(U0h_,+Wkx)

\*
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http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: forget gate

Delete information from the cell state that is no longer needed.

f=0c(U0h_,+Wkx)

\*
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LSTM: candidate cell

Extract information from the previous hidden state and the current input.

¢, = tanh(Uh,_; + W*x,)

\*
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LSTM: input gate

Select the information to add to the new cell state.

it = U(Uiht_l + Wixt)

\*

%) ) &)
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LSTM: input gate
Select the information to add to the new cell state.

it = G(Uiht_l + Wixt)

\*

\I 7
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LSTM: cell state

Update the cell state.

\*
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LSTM: output gate

Select what information is required for the current hidden state (as opposed to
what information needs to be preserved for future decisions).

0,= o(Uh,_; + W°x,)

\*
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LSTM: hidden state

Update the hidden state.

h, = o, © tanh(c,)

\*

1
&)
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LSTM: all equations

f=0c(U0h_,+Wkx)
it = U(Uiht_l + Wixt)

0,= o(Uh,_; + W°x,)

¢, = tanh(Uh,_; + W*x,)

h, = o, © tanh(c,)
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LSTM: predictions

class prediction

softmax / argmax
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LSTM: stacked and bidirectional

CoiOC % O Chp
RNN 3
RNN 2
RNN 1 \ /
G
(GRS )% (X3 C_xn D L \
G
A
—>( 4+
C P4 pack ) RNN 2 (Right to Left) < |
A A A \ A
RNN 1 (Left to Right) I > ( ﬁé_;;g\g; )
A A A A
X4 )X )Y X3 ) ( Xn )
96 Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.
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LSTM: applications

» Language modelling (Mikolov et al., 2010; Sundermeyer et al., 2012)

» Sequence labelling (e.g., POS tagging, Named Entity Recognition)

» Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)
> Machine translation (Bahdanau et al., 2015)

» Auto-regressive generation (e.g., image captioning (Bernardi et al., 2016))

> Sequence classification (e.g., sentiment analysis, fake news detection)

X
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Sentence representations with NNs

» Bag of Words models
= sentence representations are order-independent function of the word
representations

» Sequence models
= sentence representations are an order-sensitive function of a sequence of
word representations (surface form)
= can they still capture the underlying syntactic structure? (e.g., Linzen et al.,
2016, Giulianelli et al., 2018)

> Tree-structured models
= sentence representations are a function of the word representations,
sensitive to the syntactic structure of the sentence

X
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Tree-structured models

> More faithful operationalisation of the principle of compositionality
> Helpful in disambiguation: similar surface form, different underlying structure

» Requires syntactic parse trees (constituency or dependency)

S

S
/\ NP VP

NP VP |
| PRP /\

PRP | VBZ NP
He VB7Z NP PP eats NP PP
eats IN NP NNS IN NP
spaghetti | =N | | | |
Spaghc with DT NN spaghetti with NN

a spoon mealt
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Tree-LSTM

A generalisation of the LSTM to tree-structured input.

> Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic
Representations From Tree-Structured Long Short-Term Memory Networks. ACL

2015.
= Child-Sum Tree-LSTM

= N-ary Tree-LSTM

> Phong Le and Willem Zuidema. Compositional distributional semantics with long
short term memory. *SEM 2015.

> Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. Long short-term memory over
recursive structures. ICML 2015.

X
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Tree-LSTM
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Tree-LSTM

» Gates and memory cell updates are dependent on the states of a node's children,
rather than on the states of the previous words.

> |Instead of a single forget gate, Tree-LSTM unit contains one forget gate for each
child to selectively incorporate information from each child.

oo
oaxaxx
///////,*777700!
oo oo oo oo
| L . o
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Tree-LSTM variants

» Child-Sum Tree-LSTM
= sum over the hidden representations of all children of a node (no children order)
= can be used for a variable number of children
= shares parameters between children
= suitable for dependency trees

» N-ary Tree-LSTM
= discriminates between children node positions (weighted sum)
= fixed maximum branching factor: can be used with N children at most
- different parameters for each child
= suitable for constituency trees

X
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Child-Sum Tree-LSTM

h. = h
J Zkecm K

Jik

o(U' by + W/ x;)

c.=1.0OcC:+ : C
A Zkec(j)f]kG k
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Child-Sum Tree-LSTM

h;

Zke () it

o(U' by + W/ x;)

Jik

i = o(U'h;+ W'x)

C; = tanh(U Cizj + chj)

c.=1.0cC.+ : C
A Zkec(j)f]kQ k

0; O tanh(c))

=
|

X
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N-ary Tree-LSTM

N
_ W f
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N-ary Tree-LSTM

N
_ f

parent h [. 00 .]
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I=1
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hj =0;© tanh(cj) 4 + 3N + N? parameter matrices
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Tree-LSTM: forget gates

Child-Sum Tree-LSTM

= o(U o+ W . 1 parameter matrix U’:
jj’lef g ( left J ) symmetric treatment of
Jivight = O 94 — W/ X) children

Binary Tree-LSTM

fl-,leﬁ =0 <Wf X; + U{; filefi hj,leﬂ + U{; fi.right hj,,,,-ght> 4 parameter matrices U)];y:
asymmetric treatment of
children

— f f /
Jiright = © (W X Uright,left W+ Uright,right hj,right>
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Binary Tree-LSTM: sentiment classification

class prediction

softmax / argmax

oo
oo
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Binary Tree-LSTM: sentiment classification
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Compositional semantics with NNs

Models

1. Bag of Words (BOW)

2. Continuous Bag of Words (CBOW)

3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW with pre-trained word embeddings
5. LSTM

6. Tree-LSTM

NLP1 2020: Compositional semantics and sentence representations 111



