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Principle of compositionality 

The meaning of a complex expression is determined by the meanings of 
its constituents and by the rules used to combine them.
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Phrase

words structure

Sentence

phrases structure

lexical 
semantics syntax

Principle of compositionality 

The meaning of a complex expression is determined by the meanings of 
its constituents and by the rules used to combine them.
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Semantic composition

What is the meaning of “carnivorous plants digest slowly”? 



Issues with semantic composition
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‣ Similar syntactic structures may have different meanings

➡ it runs 
➡ it rains, it snows (here, it is a pleonastic pronoun)


‣ Different syntactic structures may have the same meaning (e.g., passive constructions)

➡ Eve ate the apple. 
➡ The apple was eaten by Eve. 

‣ Not all phrases are interpreted compositionally (e.g., idioms)

➡ kick the bucket 
➡ pull someone’s leg 

    but the compositional interpretation is still possible.
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‣ Additional meaning can arise through composition (e.g., logical metonymy)

➡ fast car 
➡ fast algorithm 
➡ begin a book 

‣ Meaning transfers (e.g., metaphor)

➡ he put a grape into his mouth and swallowed it whole 
➡ he swallowed her story whole 

‣ Additional connotations can arise through composition

➡ I can’t buy this story 

‣ Recursive composition

Issues with semantic composition
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‣ Recursive composition

Issues with semantic composition
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‣ Recursive composition

A defining property of 
natural languages is 

productivity:

they license a theoretically 

infinite set of possible 
expressions.


Compositionality and 
recursion allow for 

productivity.

Issues with semantic composition



!13NLP1 2020: Compositional semantics and sentence representations

Cautionary notes

‣ The meaning of the whole is constructed from its parts,  
and the meaning of the parts is derived from the whole. 


‣ Compositionality is a matter of degree rather than a binary 
notion. 

carnivorous plants              take advantage              kick the bucket

fully compositional non-compositional



Modelling compositional semantics
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1. Compositional distributional semantics

  ‣ composition is modelled in a vector space

  ‣ unsupervised

  ‣ general purpose representations


2. Compositional semantics with neural networks 
  ‣ (typically) supervised

  ‣ (typically) task-specific representations
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it was authentic scrumpy, rather sharp and very strong 
we could taste a famous local product — scrumpy 

spending hours in the pub drinking scrumpy
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Can distributional semantics can be extended to account for 

the meaning of phrases and sentences?

it was authentic scrumpy, rather sharp and very strong 
we could taste a famous local product — scrumpy 

spending hours in the pub drinking scrumpy
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Can distributional semantics can be extended to account for 

the meaning of phrases and sentences?

it was authentic scrumpy, rather sharp and very strong 
we could taste a famous local product — scrumpy 

spending hours in the pub drinking scrumpy

her old dog is turning 14 this year! 
you see your old dog lumber slowly to the food bowl 

in an old dog, behaviour changes can appear suddenly



Compositional distributional semantics
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‣ Given a finite vocabulary, natural languages licence an infinite amount of sentences.

‣ So it is impossible to learn vector representations for all sentences.


➡ But we can still use distributional word representations and learn to perform 
semantic composition in distributional space.

Can distributional semantics can be extended to account for 

the meaning of phrases and sentences?
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‣ Given a finite vocabulary, natural languages licence an infinite amount of sentences.

‣ So it is impossible to learn vector representations for all sentences.


➡ But we can still use distributional word representations and learn to perform 
semantic composition in distributional space.

Can distributional semantics can be extended to account for 

the meaning of phrases and sentences?

vector mixture 
models

lexical function 
models
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Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p = f ( u, v, R, K )
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Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p = f ( u, v, R, K )

Constraint: p lies in the same n-dimensional space as u and v.

Assumption: all syntactic types are similar enough to have the same dimensionality.
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Mitchell and Lapata. (2010). Composition in distributional models of semantics. Cognitive science.

Words are represented as vectors, which combine to produce new vectors.

p = f ( u, v, R, K )

Constraint: p lies in the same n-dimensional space as u and v.

Assumption: all syntactic types are similar enough to have the same dimensionality.


f
additive composition function

multiplicative composition function

p = u + v

p = u �  v⊙
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Additive and multiplicative models
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‣ The additive and the multiplicative model are symmetric (commutative):  
they do not take word order or syntax into account.

➡ John hit the ball = The ball hit John 

‣ Correlate with human similarity judgments about adjective-noun, noun-noun, 
verb-noun and noun-verb pairs


‣ More suitable for modelling content words, would not apply well to function 
words:

➡ some dogs, lice and dogs, lice on dogs

Additive and multiplicative models



Lexical function models
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p = f ( U, v, R, K )

Assumption: all syntactic types are similar enough to have the same dimensionality.



Lexical function models
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p = f ( U, v, R, K )

Assumption: all syntactic types are similar enough to have the same dimensionality.

Distinguish between:

‣ words whose meaning is directly determined 

by their distributional profile, e.g. nouns

‣ words that act as functions transforming the 

distributional profile of other words, e.g., 
adjectives, adverbs

p = f ( U, v, ADJ ) =  Uv



Lexical function models
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Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-
noun constructions in semantic space. In Proceedings of EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = old(dog)


‣ Adjectives are parameter matrices (Aold, Afurry, etc.)


‣ Nouns are vectors (house, dog, etc.)


‣ Composition is a linear transformation: old dog = Aold  dog. ×



Learning adjective matrices
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For each adjective, learn a parameter matrix that allows to predict adjective-noun 
phrase vectors.

Training set

Test set

X 
 
house 
dog 
car 
cat 
toy 
…


elephant 
mercedes

Y 
 
old house 
old dog 
old car 
old cat 
old toy 
…


old elephant 
old mercedes
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Learning adjective matrices

1. Obtain a distributional vector �  for each noun �  in the vocabulary using a 
conventional DSM. 

2. Collective all adjective-noun pairs �  from the corpus. 

3. Obtain a distributional phrase vector �  for each pair �  from the same corpus 
using a conventional DSM—treating the phrase �  as a single word. 

4. The set of tuples �  represents a dataset �  for the adjective � . 

5. Learn matrix �  from �  using linear regression. Minimise the squared error loss: 
 
                                          �

nj nj

(ai, nj)

pij (ai, nj)
ai nj

{(nj, pij)}j 𝒟(ai) ai

Ai 𝒟(ai)

L(Ai) = ∑
j∈𝒟(ai)

∥pij − Ainj∥2



!34NLP1 2020: Compositional semantics and sentence representations

Verbs as lexical functions

Verbs too can modelled as lexical functions that are applied to their arguments.  
 
They are represented as tensors whose order is determined by the subcategorisation 
frame of the verb (i.e., how many and what type of arguments the verb takes).


‣ Intransitive verbs take a subject as their only argument 

  dogs bark      Vbark  dogs 

modelled as a matrix (second-order tensor)


‣ Transitive verbs take a subject and an object 

  dogs eat meat      (Veat  meat)  dogs 

modelled as a third-order tensor

×

× ×



Modelling compositional semantics
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1. Compositional distributional semantics

  ‣ composition is modelled in a vector space

  ‣ unsupervised learning

  ‣ general purpose representations


2. Compositional semantics with neural networks 
  ‣ (typically) supervised learning

  ‣ (typically) task-specific representations



Modelling compositional semantics
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1. Compositional distributional semantics

  ‣ composition is modelled in a vector space

  ‣ unsupervised learning

  ‣ general purpose representations


2. Compositional semantics with neural networks 
  ‣ (typically) supervised learning

  ‣ (typically) task-specific representations

Task: sentiment classification       (Practical 2)
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Compositional semantics with NNs
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1. Learn sentence (or phrase) representations


2. Learn to make task-specific predictions based on the 
sentence (or phrase) representation



Compositional semantics with NNs
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1. Learn sentence (or phrase) representations


2. Learn to make task-specific predictions based on the 
sentence (or phrase) representation



Task: Sentiment classification
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Darkly funny and frequently insightful

0. very negative

1. negative

2. neutral

3. positive

4. very positive
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Task-specific representations
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funny

boring

breathtaking

extreme unease

exhilarating

almost unbearably morbid

drowned by in boredom

beautifully acted

black and white



Dataset: Stanford Sentiment Treebank
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12K movie reviews 
  ‣  one sentence per review

  ‣  sentence-level sentiment score

  ‣  binary syntactic tree 

  ‣  phrase-level sentiment scores



Compositional semantics with NNs
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1. Learn sentence (or phrase) representations


2. Learn to make task-specific predictions based on the 
sentence (or phrase) representation
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Compositional semantics with NNs

Models 

1. Bag of Words (BOW)

2. Continuous Bag of Words (CBOW)

3. Deep Continuous Bag of Words (Deep CBOW)

4. Deep CBOW with pre-trained word embeddings

5. LSTM

6. Tree-LSTM



Bag of Words
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‣ Additive model: does not take word order or syntax into account


‣ Task-specific word representations with fixed dimensionality (d = 5)


‣ Dimensions of vector space are explicit, interpretable 



Bag of Words
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Bag of Words

16

I

loved

this

movie

bias b

∑ xt + b

argmax             3

                Sum word embeddings, add bias

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Bag of Words

16

I

loved

this

movie

bias b

∑ xt + b

argmax             3

                Sum word embeddings, add bias

Credits: Jasmijn Bastings (UvA NLP1 2018)

Embeddings       
randomly initialised



Bag of Words
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Bag of Words

16

I

loved

this

movie

bias b

∑ xt + b

argmax             3

                Sum word embeddings, add bias

Credits: Jasmijn Bastings (UvA NLP1 2018)

What will be the role 
of the bias vector?



Bag of Words
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Bag of Words

17

this   [0.0, 0.1, 0.1, 0.1, 0.0]
movie  [0.0, 0.1, 0.1, 0.2, 0.1]
is     [0.0, 0.1, 0.0, 0.0, 0.0]
stupid [0.9, 0.5, 0.1, 0.0, 0.0]

bias   [0.0, 0.0, 0.0, 0.0, 0.0]
--------------------------------
sum    [0.9, 0.8, 0.3, 0.3, 0.1]

argmax: 0 (very negative)
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Continuous Bag of Words

‣ Additive model: does not take word order or syntax into account


‣ Task-specific word representations of arbitrary dimensionality


‣ Dimensions of vector space are not interpretable 

‣ Prediction can be traced back to the sentence vector dimensions 
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Continuous Bag of Words
Continuous Bag of Words (CBOW)

21

I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Continuous Bag of Words
What about this?

23

I loved this movie

Concatenation

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Continuous Bag of Words

Variable sentence vector size, dependent on sentence length

‣ Not very sensible conceptually


➡ sentences in a different vector space than words

➡ one vector space for each sentence length in the dataset


‣ Hardly practicable

➡ what size should the transformation matrix be?

➡ vector size can grow very large

What about this?

23

I loved this movie

Concatenation

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Deep Continuous Bag of Words

‣ Additive model: does not take word order or syntax into account


‣ Task-specific word representations of arbitrary dimensionality


‣ Dimensions of vector space are not interpretable 

‣ More layers and non-linear transformations: prediction cannot be easily 
traced back
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Deep Continuous Bag of Words

25

Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Deep CBOW + pre-trained embeddings

‣ Additive model: does not take word order or syntax into account


‣ Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)

➡ frozen: not updated during training

➡ fine-tuned: updated with task-specific learning signal (specialised) 


‣ Dimensions of vector space are not interpretable


‣ Multiple layers and non-linear transformations: prediction cannot be easily 
traced back
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Deep CBOW + pre-trained embeddings

‣ Additive model: does not take word order or syntax into account


‣ Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)

➡ frozen: not updated during training

➡ fine-tuned: updated with task-specific learning signal (specialised) 


‣ Dimensions of vector space are not interpretable


‣ Multiple layers and non-linear transformations: prediction cannot be easily 
traced back

f

b
bre

extre

exh

almost 
drowne

beau
blac
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Deep CBOW + pre-trained embeddings

27

Deep CBOW with pretrained embeddings

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Instead of learning them from 
scratch, feed word2vec or 
Glove embeddings!

Credits: Jasmijn Bastings (UvA NLP1 2018)
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Training feedforward models

Train networks using Stochastic Gradient Descent (SGD):


1. Sample a training example

2. Forward pass: compute network activations and obtain an output vector

3. Loss: compare output vector with ground-truth label

4. Compute gradient of loss w.r.t (trainable) network parameters

5. Backpropagation: update parameters taking a step in the opposite direction of 

the gradient
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Model predictions

output vector (logits)


�o = [−0.1, 0.1, 0.1, 2.4, 0.2]
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Model predictions

output vector (logits)
 �argmax(o) class prediction 

�o = [−0.1, 0.1, 0.1, 2.4, 0.2] �3

� ̂y = [0.06, 0.07, 0.07, 0.72, 0.08]

�softmax(o)i =
exp(oi)

∑j exp(oj))
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Model predictions

output vector (logits)
 �argmax(o) class prediction 

�o = [−0.1, 0.1, 0.1, 2.4, 0.2] �3

� ̂y = [0.06, 0.07, 0.07, 0.72, 0.08]

�softmax(o)i =
exp(oi)

∑j exp(oj))

�y = [0, 0, 0, 1, 0]
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Model predictions

Cross Entropy loss

output vector (logits)
 �argmax(o) class prediction 

�o = [−0.1, 0.1, 0.1, 2.4, 0.2] �3

� ̂y = [0.06, 0.07, 0.07, 0.72, 0.08]

�softmax(o)i =
exp(oi)

∑j exp(oj))

�y = [0, 0, 0, 1, 0]
�−∑

i

yi log ̂yi = − log ̂yargmax(o)
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Recurrent neural networks
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Recurrent neural networks

‣ Networks that contain a cycle within their connections

➡ The value of a network unit is dependent on earlier outputs


‣ Naturally handle sequential input: process one element at a time


‣ Drop history independence assumption

➡ Capture and exploit the temporal nature of language

➡ Capture word order (and syntactic structure)
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Recurrent neural networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 4, 201712

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Credits: Fei-Fei Li & Justin Johnson & Serena Yeung (Stanford CS231 2017)
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Elman, J. L. (1990). Finding structure in time. Cognitive science.

9.1 • SIMPLE RECURRENT NEURAL NETWORKS 3

ht

yt

xt

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

tion value for a layer of hidden units. This hidden layer is, in turn, used to calculate
a corresponding output, yt . In a departure from our earlier window-based approach,
sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point

in time.
The hidden layer from the previous time step provides a form of memory, or

context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the

Simple recurrent neural networks

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.
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layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the

Simple recurrent neural networks

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.

�xt = Embedding(wt)
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Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

tion value for a layer of hidden units. This hidden layer is, in turn, used to calculate
a corresponding output, yt . In a departure from our earlier window-based approach,
sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point

in time.
The hidden layer from the previous time step provides a form of memory, or

context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the

Simple recurrent neural networks

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.

Darkly funny and frequently insightful 
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…

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0)) = f(x2, h1)
h3 = f(x3, f(x2, f(x1, h0))) = f(x3, h2)

�xt = Embedding(wt)
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sequences are processed by presenting one element at a time to the network. The
key difference from a feedforward network lies in the recurrent link shown in the
figure with the dashed line. This link augments the input to the computation at the
hidden layer with the activation value of the hidden layer from the preceding point

in time.
The hidden layer from the previous time step provides a form of memory, or

context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this architecture does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension may make RNNs appear to be more exotic than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation. To see this, consider Fig. 9.3
which clarifies the nature of the recurrence and how it factors into the computation
at the hidden layer. The most significant change lies in the new set of weights,
U , that connect the hidden layer from the previous time step to the current hidden
layer. These weights determine how the network should make use of past context in
calculating the output for the current input. As with the other weights in the network,
these connections are trained via backpropagation.

9.1.1 Inference in Simple RNNs
Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output yt for an input xt , we need the activation value for the hidden
layer ht . To calculate this, we multiply the input xt with the weight matrix W , and
the hidden layer from the previous time step ht�1 with the weight matrix U . We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, ht . Once we have the
values for the hidden layer, we proceed with the usual computation to generate the

Simple recurrent neural networks

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.
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Figure 9.3 Simple recurrent neural network illustrated as a feedforward network.

output vector.

ht = g(Uht�1 +Wxt)

yt = f (V ht)

In the commonly encountered case of soft classification, computing yt consists of
a softmax computation that provides a normalized probability distribution over the
possible output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(U hi�1 + W xi)
yi f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the
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start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
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9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the

‣ Consist of a single cell, the “RNN 
cell”, that is fed input elements one at 
a time (one for each timestep)  

‣ Hidden layer from previous timestep 
provides a form of memory of 
preceding context 
➡ encodes earlier processing

➡ informs the decisions to be made at 

later points in time 


‣ No fixed limit on the length of the 
preceding context
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for i ← 1 to n do

ht = f(Uht−1 + Wxt)
yt = g(Vht)

return y
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yt = f (V ht)

In the commonly encountered case of soft classification, computing yt consists of
a softmax computation that provides a normalized probability distribution over the
possible output classes.

yt = softmax(V ht)

The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0 0
for i 1 to LENGTH(x) do

hi g(U hi�1 + W xi)
yi f (V hi)

return y

Figure 9.4 Forward inference in a simple recurrent network. The matrices U , V and W are
shared across time, while new values for h and y are calculated with each time step.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.
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The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time
step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.
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9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the
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The fact that the computation at time t requires the value of the hidden layer
from time t�1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
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9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W , the
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Figure 9.5 A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U , V and W are shared in common across all time steps.

weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.

∂L

∂V
=

∂L

∂a

∂a

∂ z

∂ z

∂V

The first term on the right is the derivative of the loss function with respect to
the network output, a. The second term is the derivative of the network output with
respect to the intermediate network activation z, which is a function of the activation

� 

� 

� 


� 

� 


�

x ← (x1, …, xn)
h0 ← 0
for i ← 1 to n do

ht = f(Uht−1 + Wxt)
yt = g(Vht)

return y

timesteps
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weights from the input layer to the hidden layer, U , the weights from the previous
hidden layer to the current hidden layer, and finally V , the weights from the hidden
layer to the output layer.

Before going on, let’s first review some of the notation that we introduced in
Chapter 7. Assuming a network with an input layer x and a non-linear activation
function g, a

[i] refers to the activation value from a layer i, which is the result of
applying g to z

[i], the weighted sum of the inputs to that layer.
Fig. 9.5 illustrates two considerations that we didn’t have to worry about with

backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t � 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t + 1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as

the ones that follow.
Consider the situation where we are examining an input/output pair at time 2 as

shown in Fig. 9.6. What do we need to compute the gradients required to update
the weights U , V , and W here? Let’s start by reviewing how we compute the gra-
dients required to update V since this computation is unchanged from feedforward
networks. To review from Chapter 7, we need to compute the derivative of the loss
function L with respect to the weights V . However, since the loss is not expressed
directly in terms of the weights, we apply the chain rule to get there indirectly.
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for i ← 1 to n do

ht = f(Uht−1 + Wxt)
yt = g(Vht)

return y
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class prediction
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function g. The final term in our application of the chain rule is the derivative of the
network activation with respect to the weights V , which is the activation value of the
current hidden layer ht .

It’s useful here to use the first two terms to define d , an error term that represents
how much of the scalar loss is attributable to each of the units in the output layer.

dout =
∂L

∂a

∂a

∂ z
(9.1)

dout = L
0
g
0(z) (9.2)

Therefore, the final gradient we need to update the weight matrix V is just:

∂L

∂V
= doutht (9.3)
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Figure 9.6 The backpropagation of errors in a simple RNN ti vectors represent the targets for each element
of the sequence from the training data. The red arrows illustrate the flow of backpropagated errors required to
calculate the gradients for U , V and W at time 2. The two incoming arrows converging on h2 signal that these
errors need to be summed.

Moving on, we need to compute the corresponding gradients for the weight ma-
trices W and U : ∂L

∂W
and ∂L

∂U
. Here we encounter the first substantive change from

feedforward networks. The hidden state at time t contributes to the output and asso-
ciated error at time t and to the output and error at the next time step, t +1. Therefore,
the error term, dh, for the hidden layer must be the sum of the error term from the
current output and its error from the next time step.

dh = g
0(z)V dout +dnext

Given this total error term for the hidden layer, we can compute the gradients for
the weights U and W using the chain rule as we did in Chapter 7.

Simple RNNs are hard to train because of the vanishing gradient problem: 


‣ during backpropagation, gradients can quickly become small


‣ as they repeatedly go through multiplications and non-linear functions 
(e.g. sigmoid or tanh) 
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LSTM: long short-term memory 

‣ Designed to maintain relevant context over time

➡ learn to forget information that is no longer needed 

➡ learn to remember information required for future decisions


‣ Deals well with long-term dependencies in the input sequence


‣ With respect to a Simple RNN

➡ add an explicit context layer (cell state) to the architecture

➡ make use of gates to control the flow of information


‣ Consists of a single cell, the “LSTM cell”, that is repeatedly applied to the 
input elements

Hochreiter and Schmidhuber (1997). Long short-term memory. Neural Computation.
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LSTM: long short-term memory 
Hochreiter and Schmidhuber (1997). Long short-term memory. Neural Computation.

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

cell 
state

forget 
gate

input 
gate

output 
gate

candidate 
cell

hidden 
state

The LSTM cell

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: forget gate

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

forget 
gate

�ft = σ(Uf ht−1 + Wf xt)

Delete information from the cell state that is no longer needed.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: forget gate

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

forget 
gate

�ft = σ(Uf ht−1 + Wf xt)

Delete information from the cell state that is no longer needed.

�ct−1 ⊙ ft

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: candidate cell

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

candidate 
cell

Extract information from the previous hidden state and the current input.

�c̃t = tanh(Ucht−1 + Wcxt)

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: input gate 

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

input 
gate

�it = σ(Uiht−1 + Wixt)

Select the information to add to the new cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: input gate 

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

input 
gate

�it = σ(Uiht−1 + Wixt)

Select the information to add to the new cell state.

candidate 
cell

�it ⊙ c̃t

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Update the cell state.
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LSTM: cell state

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

�ct = ft ⊙ c̃t−1 + it ⊙ c̃t

�ft ⊙ c̃t−1

cell 
state�it ⊙ c̃t

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Select what information is required for the current hidden state (as opposed to 
what information needs to be preserved for future decisions). 


!92NLP1 2020: Compositional semantics and sentence representations

LSTM: output gate

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

output 
gate

�ot = σ(Uoht−1 + Woxt)

http://colah.github.io/posts/2015-08-Understanding-LSTMs


!93NLP1 2020: Compositional semantics and sentence representations

LSTM: hidden state

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

hidden 
state

Update the hidden state.

�ht = ot ⊙ tanh(ct)

output 
gate

cell 
state

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: all equations

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 
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ft = σ(Uf ht−1 + Wf xt)

it = σ(Uiht−1 + Wixt)

ot = σ(Uoht−1 + Woxt)

c̃t = tanh(Ucht−1 + Wcxt)

ct = ft ⊙ c̃t−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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LSTM: predictions

Credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

softmax / argmax

class prediction

http://colah.github.io/posts/2015-08-Understanding-LSTMs


!96NLP1 2020: Compositional semantics and sentence representations

LSTM: stacked and bidirectional

Credits: Jurafsky & Martin, Ch. 9, Speech and Language Processing, 3rd ed.

9.4 • MANAGING CONTEXT IN RNNS: LSTMS AND GRUS 15

Figure 9.11 A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

hn_forw

h1_back

Softmax

Figure 9.12 A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical
to many language applications. To see this, consider the following example in the
context of language modeling.

(9.15) The flights the airline was cancelling were full.

9.3 • DEEP NETWORKS: STACKED AND BIDIRECTIONAL RNNS 13

9.3 Deep Networks: Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNs.

9.3.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs
the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3
yn

x1 x2 x3 xn

RNN 1

RNN 3

RNN 2

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.
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LSTM: applications

‣ Language modelling (Mikolov et al., 2010; Sundermeyer et al., 2012)


‣ Sequence labelling (e.g., POS tagging, Named Entity Recognition) 

‣ Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)


‣ Machine translation (Bahdanau et al., 2015) 

‣ Auto-regressive generation (e.g., image captioning (Bernardi et al., 2016))


‣ Sequence classification (e.g., sentiment analysis, fake news detection)


‣ …
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Sentence representations with NNs

‣Bag of Words models 
➡ sentence representations are order-independent function of the word 

representations


‣Sequence models 
➡ sentence representations are an order-sensitive function of a sequence of 

word representations (surface form)  

➡ can they still capture the underlying syntactic structure? (e.g., Linzen et al., 

2016, Giulianelli et al., 2018)


‣Tree-structured models 
➡ sentence representations are a function of the word representations, 

sensitive to the syntactic structure of the sentence
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Tree-structured models

‣ More faithful operationalisation of the principle of compositionality


‣ Helpful in disambiguation: similar surface form, different underlying structure


‣ Requires syntactic parse trees (constituency or dependency)

Sidenote:	Are	languages	recursive?

• Cognitively	debatable
• But:	recursion	helpful	in	describing	natural	language
• Example:	“the	church	which	has	nice	windows”,	a	noun	phrase	

containing	a	relative	clause	that	contains	a	noun	phrases
• Arguments	for	now:	1)	Helpful	in	disambiguation:

4/29/16Richard	SocherLecture	1,	Slide	 18
Credits: Richard Socher (Stanford CS224d 2016, Lecture 9)
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Tree-LSTM

A generalisation of the LSTM to tree-structured input. 


‣ Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic 
Representations From Tree-Structured Long Short-Term Memory Networks. ACL 
2015. 


➡ Child-Sum Tree-LSTM 

➡ N-ary Tree-LSTM 


‣ Phong Le and Willem Zuidema. Compositional distributional semantics with long 
short term memory. *SEM 2015. 


‣ Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. Long short-term memory over 
recursive structures. ICML 2015. 
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Tree-LSTM

Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.

Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.

Credits: Jasmijn Bastings (UvA NLP1 2018)



!102NLP1 2020: Compositional semantics and sentence representations

Tree-LSTM
‣ Gates and memory cell updates are dependent on the states of a node's children, 

rather than on the states of the previous words. 


‣ Instead of a single forget gate, Tree-LSTM unit contains one forget gate for each 
child to selectively incorporate information from each child.

Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.
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Tree-LSTM variants

‣Child-Sum Tree-LSTM 
➡ sum over the hidden representations of all children of a node (no children order)

➡ can be used for a variable number of children

➡ shares parameters between children

➡ suitable for dependency trees


‣N-ary Tree-LSTM 
➡ discriminates between children node positions (weighted sum)

➡ fixed maximum branching factor: can be used with N children at most

➡ different parameters for each child 

➡ suitable for constituency trees
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Child-Sum Tree-LSTM

Credits: Jasmijn Bastings (UvA NLP1 2018)

⊙o

⊙i

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

⊙f1 ⊙fN

Nth child

state = sum of 
children’s h!

candidates

�

�

� 


� 


� 


� 
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�

h̃j = ∑k∈C( j)
hk

fjk = σ(Uf hk + Wf xj)

ij = σ(Uih̃j + Wixj)

oj = σ(Uoh̃j + Woxj)

c̃j = tanh(Uch̃j + Wcxj)

cj = ij ⊙ c̃j + ∑k∈C( j)
fjk ⊙ ck

hj = oj ⊙ tanh(cj)
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Child-Sum Tree-LSTM

Credits: Jasmijn Bastings (UvA NLP1 2018)

⊙o

⊙i

Child-Sum Tree LSTM

66

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

⊙f1 ⊙fN

Nth child

state = sum of 
children’s h!

candidates

�

�
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� 
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� 


�

h̃j = ∑k∈C( j)
hk

fjk = σ(Uf hk + Wf xj)

ij = σ(Uih̃j + Wixj)

oj = σ(Uoh̃j + Woxj)

c̃j = tanh(Uch̃j + Wcxj)

cj = ij ⊙ c̃j + ∑k∈C( j)
fjk ⊙ ck

hj = oj ⊙ tanh(cj)
�  parameter matrices8
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N-ary Tree-LSTM

Credits: Jasmijn Bastings (UvA NLP1 2018)
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N-ary Tree-LSTM

Credits: Jasmijn Bastings (UvA NLP1 2018)

⊙i

⊙o

N-ary Tree LSTM
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Tree-LSTM: forget gates

Child-Sum Tree-LSTM 

�  

�  

Binary Tree-LSTM 

�  

�

fj,left = σ(Uf hleft + Wf xj)

fj,right = σ(Uf hright + Wf xj)

fj,left = σ (Wf xj + Uf
left,left hj,left + Uf

left,right hj,right)
fj,right = σ (Wf xj + Uf

right,left hj,left + Uf
right,right hj,right)

1 parameter matrix � : 
symmetric treatment of 

children

Uf

4 parameter matrices � : 
asymmetric treatment of 

children

Uf
x,y
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Binary Tree-LSTM: sentiment classification
Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.

softmax / argmax

class prediction
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Binary Tree-LSTM: sentiment classification
Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.

2

4

4
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Compositional semantics with NNs

Models 

1. Bag of Words (BOW)

2. Continuous Bag of Words (CBOW)

3. Deep Continuous Bag of Words (Deep CBOW)

4. Deep CBOW with pre-trained word embeddings

5. LSTM

6. Tree-LSTM


