
Natural Language Processing 1

Natural Language Processing 1
Lecture 7: Compositional semantics and sentence

representations

Katia Shutova and Sandro Pezzelle

ILLC
University of Amsterdam

18 November 2019

1 / 20

Natural Language Processing 1

Compositional semantics

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks

2 / 20

Natural Language Processing 1

Compositional semantics

Compositional semantics

I Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

I Sentence structure conveys some meaning
I Deep grammars: model semantics alongside syntax, one

semantic composition rule per syntax rule

3 / 20

Natural Language Processing 1

Compositional semantics

Compositional semantics alongside syntax

4 / 20

Natural Language Processing 1

Compositional semantics

Semantic composition is non-trivial
I Similar syntactic structures may have different meanings:

it barks
it rains; it snows – pleonastic pronouns

I Different syntactic structures may have the same meaning:
Kim seems to sleep.
It seems that Kim sleeps.

I Not all phrases are interpreted compositionally, e.g. idioms:
red tape
kick the bucket

but they can be interpreted compositionally too, so we can
not simply block them.

5 / 20

Natural Language Processing 1

Compositional semantics

Semantic composition is non-trivial

I Elliptical constructions where additional meaning arises
through composition, e.g. logical metonymy:

fast programmer
fast plane

I Meaning transfer and additional connotations that arise
through composition, e.g. metaphor

I cant buy this story.
This sum will buy you a ride on the train.

I Recursion

6 / 20

Natural Language Processing 1

Compositional semantics

Recursion

7 / 20

Natural Language Processing 1

Compositional semantics

Compositional semantic models

1. Compositional distributional semantics
I model composition in a vector space
I unsupervised
I general-purpose representations

2. Compositional semantics in neural networks
I supervised
I (typically) task-specific representations

8 / 20

Natural Language Processing 1

Compositional distributional semantics

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks

9 / 20

Natural Language Processing 1

Compositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the
meaning of phrases and sentences?

I Language can have an infinite number of sentences, given
a limited vocabulary

I So we can not learn vectors for all phrases and sentences
I and need to do composition in a distributional space

10 / 20

Natural Language Processing 1

Compositional distributional semantics

1. Vector mixture models

Mitchell and Lapata, 2010.
Composition in
Distributional Models of
Semantics

Models:

I Additive

I Multiplicative

11 / 20

Natural Language Processing 1

Compositional distributional semantics

Additive and multiplicative models

I correlate with human similarity judgments about
adjective-noun, noun-noun, verb-noun and noun-verb pairs

I but... commutative, hence do not account for word order
John hit the ball = The ball hit John!

I more suitable for modelling content words, would not port
well to function words:
e.g. some dogs; lice and dogs; lice on dogs

12 / 20

Natural Language Processing 1

Compositional distributional semantics

2. Lexical function models

Distinguish between:

I words whose meaning is
directly determined by their
distributional behaviour, e.g.
nouns

I words that act as functions
transforming the distributional
profile of other words, e.g.,
verbs, adjectives and
prepositions

13 / 20

Natural Language Processing 1

Compositional distributional semantics

Lexical function models
Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

I Adjectives are parameter matrices (Aold , Afurry , etc.).

I Nouns are vectors (house, dog, etc.).

I Composition is simply old dog = Aold ⇥ dog.

14 / 20

Natural Language Processing 1

Compositional distributional semantics

Learning adjective matrices
For each adjective, learn a set of parameters that allow to predict the
vectors of adjective-noun phrases

Training set:
house old house
dog old dog
car ! old car
cat old cat
toy old toy
... ...

Test set:
elephant ! old elephant
mercedes ! old mercedes

15 / 20

Natural Language Processing 1

Compositional distributional semantics

Learning adjective matrices

1. Obtain a distributional vector nj for each noun nj in the lexicon.

2. Collect adjective noun pairs (ai , nj) from the corpus.

3. Obtain a distributional vector pij of each pair (ai , nj) from the
same corpus using a conventional DSM.

4. The set of tuples {(nj ,pij)}j represents a dataset D(ai) for the
adjective ai .

5. Learn matrix Ai from D(ai) using linear regression.

Minimize the squared error loss:

L(Ai) =
X

j2D(ai)

kpij � Ainjk2

16 / 20

Natural Language Processing 1

Compositional distributional semantics

Verbs as higher-order tensors

Different patterns of subcategorization, i.e. how many (and
what kind of) arguments the verb takes

I Intransitive verbs: only subject
Kim slept

modelled as a matrix (second-order tensor): N ⇥ M

I Transitive verbs: subject and object
Kim loves her dog

modelled as a third-order tensor: N ⇥ M ⇥ K

17 / 20

Natural Language Processing 1

Compositional distributional semantics

Polysemy in lexical function models

Generally:

I use single representation for all senses

I assume that ambiguity can be handled as long as contextual
information is available

Exceptions:

I Kartsaklis and Sadrzadeh (2013): homonymy poses problems
and is better handled with prior disambiguation

I Gutierrez et al (2016): literal and metaphorical senses better
handled by separate models

I However, this is still an open research question.

18 / 20

Natural Language Processing 1

Compositional distributional semantics

Modelling metaphor in lexical function models
Gutierrez et al (2016). Literal and Metaphorical Senses in Compositional
Distributional Semantic Models.

I trained separate lexical functions for literal and metaphorical
senses of adjectives

I mapping from literal to metaphorical sense as a linear
transformation

I model can identify metaphorical expressions:

e.g. brilliant person

I and interpret them

brilliant person: clever person
brilliant person: genius

19 / 20

Natural Language Processing 1

Compositional semantics in neural networks

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks

20 / 20

Compositional semantics and sentence
representations w/ Neural Networks

Sandro Pezzelle
sandropezzelle.github.io
NLP1 2019. November 18, 2019

Credits: Joost Bastings

1

Overview

1) How do we learn a (task-specific)
representation of a sentence with a
neural network?

2) How do we make a prediction for a
given task from that representation?

2

We will see the task, dataset
and models of Practical 2!

Compositional Distributional Semantics vs Neural Networks

3

Compositional Distributional Semantics Models (cDSMs):

- general-purpose representations (e.g., sum of word embeddings)
- representations obtained in an unsupervised manner

Neural Networks (NNs):

- task-specific representations (i.e., optimized for one given task or set of tasks)
- representations learned in a supervised manner

Task

4

Task: Sentiment classification of movie reviews

5

 You’ll probably love it. →

0. very negative

1. negative

2. neutral

3. positive

4. very positive
Task-specific: The learned
representation has to be
“specialized” on sentiment!

Words (and sentences) into vectors

6

trash

classic

masterpiece
an Oscar-winning movie

x

y

When we talk about representations ...

Sentence representation: A (very) simplified picture

7

 cDSMs (sum) NNs

you

will

probably

love

it

you

will

probably

love
it

 you will probably love it you will probably love it

Dataset

8

Dataset: Stanford Sentiment Treebank (SST)

9

11,855 data-points* including:

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. more detailed sentiment scores (node-level)

*Question: Is this dataset big (for training Neural Nets)?

Binary parse tree: One example

10

Models

11

Models

12

1. Bag of Words (BOW)
2. Continuous Bag of Words (CBOW)
3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW + pre-trained word embeddings
5. LSTM
6. Tree LSTM

Practical 2:
https://tinyurl.com/qrte8th

First approach: Sentence + Sentiment

13

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

1. Bag of Words (BOW)

14

What is a Bag of Words?

15
Credits: CMU

Bag of Words

16

I

loved

this

movie

bias b

∑ xt + b

argmax 3

 Sum word embeddings, add bias

Bag of Words

17

WKLV���>�����������������������@
PRYLH��>�����������������������@
LV�����>�����������������������@
VWXSLG�>�����������������������@

ELDV���>�����������������������@
��������������������������������
VXP����>�����������������������@

DUJPD[�����YHU\�QHJDWLYH�

Turning words into numbers

18

We want to feed words to a neural network
How to turn words into numbers?

cat is closer to tree
than to dog?!

Bad idea: number sequence
cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot vectors
cat [0, 0, 0, 0, 1]
tree [0, 0, 0, 1, 0]
chair [0, 0, 1, 0, 0]
dog [0, 1, 0, 0, 0]
mat [1, 0, 0, 0, 0]

One-hot vectors select word embeddings

19

=

one-hot vector

Used as
“lookup table”
in practice

parameters embedding

2. Continuous Bag of Words
(CBOW)

20

Continuous Bag of Words (CBOW)

21

I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

Recall: Matrix Multiplication

22

1 2 3

4 5 6

1 2

1 2

1 2

୛ =

2x3

3x2

1୛1 + 2୛1 + 3୛1 1୛2 + 2୛2 + 3୛2

4୛1 + 5୛1 + 6୛1 4୛2 + 5୛2 + 6୛2

Rows multiply with columns

2x2

What about this?

23

I loved this movie

3. Deep CBOW

24

25

Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh(W’ tanh(W (∑ xt) + b) + b’) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

4. Deep CBOW + Pretrained
embeddings

26

27

Deep CBOW with pretrained embeddings

I

loved

this

movie

∑ xt

tanh

W’’ tanh(W’ tanh(W (∑ xt) + b) + b’) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Instead of learning them from
scratch, feed word2vec or
Glove embeddings!

Deep CBOW with pretrained embeddings

28

Question: Why would that help?

Recap: Training a neural network

29

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function (Cross Entropy)
4. Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. (learnable) parameters (= weights + bias)
5. Take a small step in the opposite direction of the gradient

Cross Entropy Loss

30

Given:

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795] output vector (after softmax) from forward pass
y = [0, 0, 0, 1, 0] target / label (y3 = 1)

When our output is categorical (i.e., a number of classes), we can use a Cross Entropy loss:

CE(y, ŷ) = - ∑ yi log ŷi

SparseCE(y = 3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss
works like this and does the
softmax on o for you!

Softmax

31

o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / ∑j exp(oj)

This makes o sum to 1.0:

softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax
for prediction, there we
simply take the argmax

But we do need a softmax
combined to CE to compute
model loss (argmax is NOT
differentiable)

Backpropagation example

32

tanh

x

W

W’

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]
y = [0, 0, 0, 1, 0]

loss L = CE(ŷ, y) = -log(ŷ3) = -log(0.7177)
= 0.144

compute gradients, e.g. for W’:
δL/δW’ = δL/δo δo/δW’
δL/δo = δL/δŷ δŷ/δo
 = -1/ŷ3 δsoftmax(o)/δo

update weights:
W’ = W’ - eta * δL/δW’

o

ŷ = softmax(o)

the chain rule is your friend!
L = f(g(x))
δL/δx = δf(g(x))/δg(x) ԫ δg(x)/δx

Recurrent Neural Networks

33

34

- RNNs widely used for handling sequences!

- RNNs ~ multiple copies of same network, each passing a message to a

successor

- Take an input vector x and output an output vector h

- Crucially, h influenced by entire history of inputs fed in in the past

- Internal state h gets updated at every time step → in the simplest case, this state

consists of a single hidden vector h

Introduction: Recurrent Neural Network (RNN)

Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state after reading in
this sentence.

Remember:
ht = f(xt, ht-1)

Introduction: Recurrent Neural Network (RNN)

35
Elman (1990)

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, ...)))

Introduction: Recurrent Neural Network (RNN)

36
Elman (1990). Finding structure in time.

ht = f(xt, ht−1)

= ᶥ(Wxt + Rht-1 + b)
R

W

xt

++

RNNs model sequential data - one input xt per time step t

Matrix based on the
previous hidden
state

Matrix based on
current input

Introduction: Unfolding the RNN

37

x1 x2 x3 x4

R R R

W W W W

Same R every
time step!

Same W every
time step!Word embedding

Introduction: Making a prediction

38

x1 x2 x3 x4

R R R

W W W W

O

We can find the prediction
using argmax

Training:
apply softmax,
compute cross entropy loss,
backpropagate

O
R R R

Introduction: The vanishing gradient problem

39

Simple RNNs are hard to train because of the vanishing gradient problem.

During backpropagation, gradients can quickly become small,

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)

x1 x2 x3 x4

W W W W

compute loss &
backpropagate

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

5. Long Short-Term Memory
network (LSTM)

40

Long Short-Term Memory (LSTM)

41

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

forget gate

input gate

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM): Core idea

42

CELL STATE: “conveyor belt”. It runs straight down the entire chain, with only some minor

linear interactions. Information can just flow along it unchanged. LSTM can remove or add

information to the cell state, carefully regulated by structures called gates

Long Short-Term Memory (LSTM)

43

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM): Step 1

44

Decide what information to throw away from the cell state: FORGET GATE looks at ht−1 and xt

and outputs a number between 0 and 1 (sigmoid) for each value in the cell state Ct-1. 1

represents “completely keep this”; a 0 represents “completely get rid of this”

Long Short-Term Memory (LSTM)

45

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

forget gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM): Step 2

46

Decide what new information to store in the cell state. Two steps: (1) a sigmoid layer (INPUT

GATE) decides which values we update (looks at xt and ht-1). (2) A tanh layer [-1,1] creates a

vector of new candidate values, gt, that could be added to the cell state

Long Short-Term Memory (LSTM)

47

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

input gate

candidates

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM): Step 3

48

Update the old cell state, Ct−1, into the new cell state Ct: The old state is multiplied by FORGET

LAYER ft, forgetting the things we decided to forget earlier. Then we add INPUT LAYER *

CANDIDATE VALUES (it 䌫 gt). This are the new candidate values scaled by how much we

decided to update each state value

Long Short-Term Memory (LSTM)

49

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM): Output

50

Decide what to output: First, a sigmoid layer (OUTPUT GATE) decides what parts of the cell

state we’re going to output. Then, the cell state is put through tanh [−1,1] and multiplied by the

output of the output gate, so that we only output the parts we decided to

Long Short-Term Memory (LSTM)

51

tanh

୛ 䠇

tanh

σ σ

σ

୛

୛

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM)

52

ht, ct = lstm(xt, ht-1, ct-1)

input gate it = σ(Wi xt + Ri ht−1 + bi)

forget gate ft = σ(Wf xt + Rf ht−1 + bf)

candidate gt = tanh(Wg xt + Rg ht−1 + bg)

output gate ot = σ(Wo xt + Ro ht−1 + bo)

cell state ct = ft ӿ ct−1 + it ӿ gt
hidden state ht = ot ӿ tanh(ct)

hidden state cell state previous hidden state and cell state

LSTMs: Applications & Success in NLP

53

- Language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012)

- Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)

- Machine translation (Bahdanau et al., 2015)

- Image captioning (Bernardi et al., 2016)

- Visual question answering (Antol et al., 2015)

- … and many other tasks!

Trees

54

Second approach: Sentence + Sentiment + Syntax

55

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

Exploiting tree structure

56

Instead of treating our input as a sequence, we can take an alternative approach:

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.

Why would it be useful?

57

Helpful in disambiguation: similar “surface” / different structure

Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

Constituency Parse

58
http://demo.allennlp.org/constituency-parsing

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing

6. Tree LSTM

59

Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context
and often capture too much of last words in final vector

Tree Recursive neural
networks require a parse
tree for each sentence

Adapted from Stanford cs224n.

Tree Recursive NN

61

this movielovedI

NODE

Adapted from Stanford cs224n.

child child

Practical II data set: Stanford Sentiment Treebank (SST)

62

 3
 ____________|____________________
 | 4
 | _________________________|__
 | 4 |
___	______________							
	4							
	_________	__________						
		3						
		_____	______________________					
			4					
			________________	_______				
				2				
				_______	___			
	3			2				
	____	_____			___	_____		
		4	3	2				
		_____	___	_____	_______	___	___	
2 2 2 3 2 2 3 2 2 2 2 2 2								
 It 's a lovely film with lovely performances by Buy and Accorsi .

sentiment label for root node

sentiment label for each node

Tree LSTMs: Generalize LSTM to tree structure

63

Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer:

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic

Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.

○ Child-Sum Tree LSTM

○ N-ary Tree LSTM

● Phong Le and Willem Zuidema.

Compositional distributional semantics with long short term memory. *SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.

Long short-term memory over recursive structures. ICML 2015.

Tree LSTMs

64

1. Child-Sum Tree LSTM

sums over all children of a node; can be used for any N of children

2. N-ary Tree LSTM

different parameters for each child; better granularity (interactions between children)

but maximum N of children per node has to be fixed

Credits: Daniel Perez https://www.slideshare.net/tuvistavie/tree-lstm

https://www.slideshare.net/tuvistavie/tree-lstm

Child-Sum Tree LSTM

65

Children outputs and memory cells are summed

1. NO children order

2. works with variable number of children (sum!)

3. shares gates weights between children

䎭o

䎭i

Child-Sum Tree LSTM

66

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

䎭f1 䎭fN

Nth child

state = sum of
children’s h!

candidates

N-ary Tree LSTM

67

 Separate parameter matrices for each child k

1. each node must have at most N (e.g., binary) ordered children

2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that siblings affect each other

Implemented
in Practical 2

䎭i

䎭o

N-ary Tree LSTM

68

left child

left hleft c right h right cx

u

parent c

right childword

parent h

䎭fl 䎭fr

candidate values

N-ary Tree LSTM

69

useful for encoding
constituency trees

LSTMs vs Tree-LSTMs

70

Question: Can standard LSTMs be considered as (a special case of) Tree-LSTMs?

Transition Sequence Representation

71

Building a tree with a transition sequence

72

We can describe a binary tree using a shift-reduce transition sequence

(I (loved (this movie)))

 S S S S R R R

We start with a buffer (queue) and an empty stack:

stack = []

buffer = queue([I, loved, this, movie])

Iterate through the transition sequence:

if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack

if REDUCE (R): pop top 2 words from stack + reduce them into a new node (w/ tree LSTM)

practical II explains how
to obtain this sequence

Transition sequence example

73

(I (loved (this movie)))

 S S S S R R R

stack

buffer I loved this movie
h c h c h c h c

Transition sequence example

74

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved this movie
h c h c h c

Transition sequence example

75

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this movie
h c h c

Transition sequence example

76

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

movie
h c

Transition sequence example

77

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

movie

Transition sequence example

78

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

this movie

movie

this movie

Tree LSTM

Transition sequence example

79

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved this movie

loved this movie

loved this movie

Tree LSTM

Transition sequence example

80

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I loved this movie

I loved this movie

Tree LSTM

I loved this movie

this is your root node
for classification

Mini-batch SGD

81

Transition sequence example (mini-batched)

82

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer It was boring *PAD*
h c h c h c h c

I loved this movie

Transition sequence example (mini-batched)

83

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

movie

I

loved

this

It

was

boring

Transition sequence example (mini-batched)

84

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved

this

It

was boring

movie

Transition sequence example (mini-batched)

85

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved

this movie

It was boring

this movie

Tree LSTM

It was boring

this movie

was boringIt

Transition sequence example (mini-batched)

86

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved this movie

It was boring

Transition sequence example (mini-batched)

87

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

It was boringI loved this movie

Optional approach: Sentence + Sentiment + Syntax + Node-level sentiment

88

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

Summary

89

Recap

90

● Training basics

○ SGD

○ Backpropagation

○ Cross Entropy Loss

● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word order

● Sequence models: RNN and LSTM

○ Sensitive to word order

○ RNN has vanishing gradient problem, LSTM deals with this

○ LSTM has input, forget, and output gates that control information flow

Recap

91

● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures

○ Exploit compositionality, but require a parse tree

○ Transition sequence

● Mini-batch SGD

Extra

92

Recap: Activation functions

94

Child-Sum Tree LSTM

97

useful for encoding
dependency trees

	Compositional semantics
	Compositional distributional semantics
	Compositional semantics in neural networks

