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Compositional semantics

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks
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Natural Language Processing 1

Compositional semantics

Compositional semantics

I Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

I Sentence structure conveys some meaning
I Deep grammars: model semantics alongside syntax, one

semantic composition rule per syntax rule
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Compositional semantics

Compositional semantics alongside syntax
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Natural Language Processing 1

Compositional semantics

Semantic composition is non-trivial
I Similar syntactic structures may have different meanings:

it barks
it rains; it snows – pleonastic pronouns

I Different syntactic structures may have the same meaning:
Kim seems to sleep.
It seems that Kim sleeps.

I Not all phrases are interpreted compositionally, e.g. idioms:
red tape
kick the bucket

but they can be interpreted compositionally too, so we can
not simply block them.
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Compositional semantics

Semantic composition is non-trivial

I Elliptical constructions where additional meaning arises
through composition, e.g. logical metonymy:

fast programmer
fast plane

I Meaning transfer and additional connotations that arise
through composition, e.g. metaphor

I cant buy this story.
This sum will buy you a ride on the train.

I Recursion
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Compositional semantics

Recursion
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Compositional semantics

Compositional semantic models

1. Compositional distributional semantics
I model composition in a vector space
I unsupervised
I general-purpose representations

2. Compositional semantics in neural networks
I supervised
I (typically) task-specific representations
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Compositional distributional semantics

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks
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Compositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the
meaning of phrases and sentences?

I Language can have an infinite number of sentences, given
a limited vocabulary

I So we can not learn vectors for all phrases and sentences
I and need to do composition in a distributional space
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Compositional distributional semantics

1. Vector mixture models

Mitchell and Lapata, 2010.
Composition in
Distributional Models of
Semantics

Models:

I Additive

I Multiplicative
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Compositional distributional semantics

Additive and multiplicative models

I correlate with human similarity judgments about
adjective-noun, noun-noun, verb-noun and noun-verb pairs

I but... commutative, hence do not account for word order
John hit the ball = The ball hit John!

I more suitable for modelling content words, would not port
well to function words:
e.g. some dogs; lice and dogs; lice on dogs
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Compositional distributional semantics

2. Lexical function models

Distinguish between:

I words whose meaning is
directly determined by their
distributional behaviour, e.g.
nouns

I words that act as functions
transforming the distributional
profile of other words, e.g.,
verbs, adjectives and
prepositions
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Compositional distributional semantics

Lexical function models
Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

I Adjectives are parameter matrices (Aold , Afurry , etc.).

I Nouns are vectors (house, dog, etc.).

I Composition is simply old dog = Aold ⇥ dog.
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Compositional distributional semantics

Learning adjective matrices
For each adjective, learn a set of parameters that allow to predict the
vectors of adjective-noun phrases

Training set:
house old house
dog old dog
car ! old car
cat old cat
toy old toy
... ...

Test set:
elephant ! old elephant
mercedes ! old mercedes
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Compositional distributional semantics

Learning adjective matrices

1. Obtain a distributional vector nj for each noun nj in the lexicon.

2. Collect adjective noun pairs (ai , nj) from the corpus.

3. Obtain a distributional vector pij of each pair (ai , nj) from the
same corpus using a conventional DSM.

4. The set of tuples {(nj ,pij)}j represents a dataset D(ai) for the
adjective ai .

5. Learn matrix Ai from D(ai) using linear regression.

Minimize the squared error loss:

L(Ai) =
X

j2D(ai )

kpij � Ainjk2
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Compositional distributional semantics

Verbs as higher-order tensors

Different patterns of subcategorization, i.e. how many (and
what kind of) arguments the verb takes

I Intransitive verbs: only subject
Kim slept

modelled as a matrix (second-order tensor): N ⇥ M

I Transitive verbs: subject and object
Kim loves her dog

modelled as a third-order tensor: N ⇥ M ⇥ K
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Compositional distributional semantics

Polysemy in lexical function models

Generally:

I use single representation for all senses

I assume that ambiguity can be handled as long as contextual
information is available

Exceptions:

I Kartsaklis and Sadrzadeh (2013): homonymy poses problems
and is better handled with prior disambiguation

I Gutierrez et al (2016): literal and metaphorical senses better
handled by separate models

I However, this is still an open research question.
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Compositional distributional semantics

Modelling metaphor in lexical function models
Gutierrez et al (2016). Literal and Metaphorical Senses in Compositional
Distributional Semantic Models.

I trained separate lexical functions for literal and metaphorical
senses of adjectives

I mapping from literal to metaphorical sense as a linear
transformation

I model can identify metaphorical expressions:

e.g. brilliant person

I and interpret them

brilliant person: clever person
brilliant person: genius
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Compositional semantics in neural networks

Outline.

Compositional semantics

Compositional distributional semantics

Compositional semantics in neural networks
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Compositional semantics and sentence 
representations w/ Neural Networks

Sandro Pezzelle
sandropezzelle.github.io
NLP1 2019. November 18, 2019

Credits: Joost Bastings
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Overview

1) How do we learn a (task-specific) 
representation of a sentence with a 
neural network?

2) How do we make a prediction for a 
given task from that representation?

2

We will see the task, dataset 
and models of Practical 2!



Compositional Distributional Semantics vs Neural Networks  

3

Compositional Distributional Semantics Models (cDSMs):

- general-purpose representations (e.g., sum of word embeddings)
- representations obtained in an unsupervised manner

Neural Networks (NNs):

- task-specific representations (i.e., optimized for one given task or set of tasks)
- representations learned in a supervised manner



Task
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Task: Sentiment classification of movie reviews

5

                                     You’ll probably love it.    → 

0. very negative

1. negative

2. neutral

3. positive

4. very positive
Task-specific: The learned 
representation has to be 
“specialized” on sentiment!



Words (and sentences) into vectors

6

trash

classic

masterpiece
an Oscar-winning movie

x

y

When we talk about representations ...



Sentence representation: A (very) simplified picture
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                                           cDSMs (sum)                                    NNs

you

will

probably

love

it

you

will

probably

love
it

                             you will probably love it              you will probably love it



Dataset
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Dataset: Stanford Sentiment Treebank (SST)

9

11,855 data-points* including:

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. more detailed sentiment scores (node-level)

*Question: Is this dataset big (for training Neural Nets)?



Binary parse tree: One example

10



Models
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Models

12

1. Bag of Words (BOW)
2. Continuous Bag of Words (CBOW)
3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW + pre-trained word embeddings
5. LSTM
6. Tree LSTM

Practical 2:
https://tinyurl.com/qrte8th



First approach: Sentence + Sentiment

13

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



1. Bag of Words (BOW)
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What is a Bag of Words?

15
Credits: CMU



Bag of Words
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I

loved

this

movie

bias b

∑ xt + b

argmax             3

                Sum word embeddings, add bias



Bag of Words
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Turning words into numbers

18

We want to feed words to a neural network
How to turn words into numbers?

cat is closer to tree 
than to dog?!

Bad idea: number sequence
cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot vectors
cat [0, 0, 0, 0, 1]
tree [0, 0, 0, 1, 0]
chair [0, 0, 1, 0, 0]
dog [0, 1, 0, 0, 0]
mat [1, 0, 0, 0, 0]



One-hot vectors select word embeddings

19

=

one-hot vector

Used as 
“lookup table” 
in practice

parameters embedding



2. Continuous Bag of Words 
(CBOW)
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Continuous Bag of Words (CBOW)

21

I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!



Recall: Matrix Multiplication
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1 2 3

4 5 6

1 2

1 2

1 2

 =

2x3

3x2

11 + 21 + 31 12 + 22 + 32

41 + 51 + 61 42 + 52 + 62

Rows multiply with columns

2x2



What about this?

23

I loved this movie



3. Deep CBOW
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Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)



4. Deep CBOW + Pretrained 
embeddings
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Deep CBOW with pretrained embeddings

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Instead of learning them from 
scratch, feed word2vec or 
Glove embeddings!



Deep CBOW with pretrained embeddings
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Question: Why would that help?



Recap: Training a neural network

29

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function (Cross Entropy)
4. Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. (learnable) parameters (= weights + bias)
5. Take a small step in the opposite direction of the gradient



Cross Entropy Loss

30

Given:

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795] output vector (after softmax) from forward pass
y = [  0,   0,   0,   1,   0] target / label (y3 = 1)

When our output is categorical (i.e., a number of classes), we can use a Cross Entropy loss:

CE(y, ŷ) = - ∑ yi log ŷi

SparseCE(y = 3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss 
works like this and does the 
softmax on o for you!



Softmax

31

o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / ∑j exp(oj)

This makes o sum to 1.0:

softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax 
for prediction, there we 
simply take the argmax

But we do need a softmax 
combined to CE to compute 
model loss (argmax is NOT 
differentiable)



Backpropagation example
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tanh

x

W

W’

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]
y = [  0,   0,   0,   1,   0] 

loss L = CE(ŷ, y) = -log(ŷ3) = -log(0.7177) 
= 0.144

compute gradients, e.g. for W’:
δL/δW’ = δL/δo δo/δW’
δL/δo  = δL/δŷ δŷ/δo
       = -1/ŷ3 δsoftmax(o)/δo

update weights: 
W’ = W’ - eta * δL/δW’

o

ŷ = softmax(o)

the chain rule is your friend!
L = f(g(x))
δL/δx = δf(g(x))/δg(x) ԫ δg(x)/δx



Recurrent Neural Networks
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- RNNs widely used for handling sequences!

- RNNs ~ multiple copies of same network, each passing a message to a 

successor

- Take an input vector x and output an output vector h

- Crucially, h influenced by entire history of inputs fed in in the past

- Internal state h gets updated at every time step → in the simplest case, this state 

consists of a single hidden vector h

Introduction: Recurrent Neural Network (RNN)



Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state after reading in 
this sentence.

Remember:
ht = f( xt, ht-1 )

Introduction: Recurrent Neural Network (RNN)

35
Elman (1990)

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, ...)))



Introduction: Recurrent Neural Network (RNN)

36
Elman (1990). Finding structure in time.

ht = f( xt, ht−1 )

= ᶥ( Wxt + Rht-1 + b )
R

W

xt

++

RNNs model sequential data - one input xt per time step t

Matrix based on the 
previous hidden 
state

Matrix based on 
current input



Introduction: Unfolding the RNN
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x1 x2 x3 x4

R R R

W W W W

Same R every 
time step!

Same W every 
time step!Word embedding



Introduction: Making a prediction
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x1 x2 x3 x4

R R R

W W W W

O

We can find the prediction 
using argmax

Training: 
apply softmax, 
compute cross entropy loss, 
backpropagate



O
R R R

Introduction: The vanishing gradient problem

39

Simple RNNs are hard to train because of the vanishing gradient problem. 

During backpropagation, gradients can quickly become small, 

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)

x1 x2 x3 x4

W W W W

compute loss & 
backpropagate

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.



5. Long Short-Term Memory 
network (LSTM)

40



Long Short-Term Memory (LSTM)

41

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data

tanh

 䠇

tanh

σ σ

σ





ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state 

forget gate

input gate

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM): Core idea
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CELL STATE: “conveyor belt”. It runs straight down the entire chain, with only some minor 

linear interactions. Information can just flow along it unchanged. LSTM can remove or add 

information to the cell state, carefully regulated by structures called gates



Long Short-Term Memory (LSTM)
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tanh

 䠇

tanh

σ σ

σ





ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM): Step 1
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Decide what information to throw away from the cell state: FORGET GATE looks at ht−1 and xt 

and outputs a number between 0 and 1 (sigmoid) for each value in the cell state Ct-1. 1 

represents “completely keep this”; a 0 represents “completely get rid of this”



Long Short-Term Memory (LSTM)

45

tanh

 䠇

tanh

σ σ

σ





ct-1
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ht
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ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

forget gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM): Step 2
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Decide what new information to store in the cell state. Two steps: (1) a sigmoid layer (INPUT 

GATE) decides which values we update (looks at xt and ht-1). (2) A tanh layer [-1,1] creates a 

vector of new candidate values, gt, that could be added to the cell state



Long Short-Term Memory (LSTM)
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tanh

 䠇

tanh

σ σ

σ





ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

input gate

candidates

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM): Step 3

48

Update the old cell state, Ct−1, into the new cell state Ct: The old state is multiplied by FORGET 

LAYER ft, forgetting the things we decided to forget earlier. Then we add INPUT LAYER * 

CANDIDATE VALUES (it 䌫 gt). This are the new candidate values scaled by how much we 

decided to update each state value



Long Short-Term Memory (LSTM)
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tanh

 䠇

tanh

σ σ

σ





ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM): Output

50

Decide what to output: First, a sigmoid layer (OUTPUT GATE) decides what parts of the cell 

state we’re going to output. Then, the cell state is put through tanh [−1,1] and multiplied by the 

output of the output gate, so that we only output the parts we decided to



Long Short-Term Memory (LSTM)
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tanh

 䠇

tanh

σ σ

σ





ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM)

52

ht, ct = lstm(xt, ht-1, ct-1)

input gate it =    σ(Wi xt + Ri ht−1 + bi)

forget gate ft =    σ(Wf xt + Rf ht−1 + bf)

candidate gt = tanh(Wg xt + Rg ht−1 + bg)

output gate ot =    σ(Wo xt + Ro ht−1 + bo)

cell state ct = ft ӿ ct−1 + it ӿ gt
hidden state ht = ot ӿ tanh(ct)

hidden state cell state previous hidden state and cell state



LSTMs: Applications & Success in NLP
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- Language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012)

- Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)

- Machine translation (Bahdanau et al., 2015)

- Image captioning (Bernardi et al., 2016)

- Visual question answering (Antol et al., 2015)

- … and many other tasks!



Trees
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Second approach: Sentence + Sentiment + Syntax
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1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



Exploiting tree structure
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Instead of treating our input as a sequence, we can take an alternative approach: 

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.



Why would it be useful?
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Helpful in disambiguation: similar “surface” / different structure

Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf


Constituency Parse

58
http://demo.allennlp.org/constituency-parsing 

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing


6. Tree LSTM

59



Recurrent vs Tree Recursive NN

60

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.



Tree Recursive NN

61

this movielovedI

NODE

Adapted from Stanford cs224n.

child child



Practical II data set: Stanford Sentiment Treebank (SST)
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              3                                                                     
  ____________|____________________                                                  
 |                                 4                                                
 |        _________________________|______________________________________________   
 |       4                                                                        | 
 |    ___|______________                                                          |  
 |   |                  4                                                         | 
 |   |         _________|__________                                               |  
 |   |        |                    3                                              | 
 |   |        |               _____|______________________                        |  
 |   |        |              |                            4                       | 
 |   |        |              |            ________________|_______                |  
 |   |        |              |           |                        2               | 
 |   |        |              |           |                 _______|___            |  
 |   |        3              |           |                |           2           | 
 |   |    ____|_____         |           |                |        ___|_____      |  
 |   |   |          4        |           3                |       2         |     | 
 |   |   |     _____|___     |      _____|_______         |    ___|___      |     |  
 2   2   2    3         2    2     3             2        2   2       2     2     2 
 |   |   |    |         |    |     |             |        |   |       |     |     |  
 It  's  a  lovely     film with lovely     performances  by Buy     and Accorsi  .

sentiment label for root node

sentiment label for each node



Tree LSTMs: Generalize LSTM to tree structure

63

Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer:

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic 

Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.

○ Child-Sum Tree LSTM

○ N-ary Tree LSTM

● Phong Le and Willem Zuidema. 

Compositional distributional semantics with long short term memory. *SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 

Long short-term memory over recursive structures. ICML 2015.



Tree LSTMs

64

1. Child-Sum Tree LSTM

sums over all children of a node;  can be used for any N of children

2. N-ary Tree LSTM

different parameters for each child; better granularity (interactions between children) 

but maximum N of children per node has to be fixed

Credits: Daniel Perez https://www.slideshare.net/tuvistavie/tree-lstm

https://www.slideshare.net/tuvistavie/tree-lstm


Child-Sum Tree LSTM
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Children outputs and memory cells are summed

1. NO children order

2. works with variable number of children (sum!)

3. shares gates weights between children



䎭o

䎭i

Child-Sum Tree LSTM

66

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

䎭f1 䎭fN

Nth child

state = sum of 
children’s h!

candidates



N-ary Tree LSTM

67

 Separate parameter matrices for each child k 

1. each node must have at most N (e.g., binary) ordered children

2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that siblings affect each other

Implemented 
in Practical 2



䎭i

䎭o

N-ary Tree LSTM

68

left child

left hleft c right h right cx

u

parent c

right childword

parent h

䎭fl 䎭fr

candidate values



N-ary Tree LSTM

69

useful for encoding 
constituency trees



LSTMs vs Tree-LSTMs
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Question:  Can standard LSTMs be considered as (a special case of) Tree-LSTMs? 



Transition Sequence Representation

71



Building a tree with a transition sequence

72

We can describe a binary tree using a shift-reduce transition sequence

(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

We start with a buffer (queue) and an empty stack:

stack = [] 

buffer = queue([I, loved, this, movie])

Iterate through the transition sequence:

if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack

if REDUCE (R): pop top 2 words from stack + reduce them into a new node (w/ tree LSTM)

practical II explains how 
to obtain this sequence



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer I loved this movie
h c h c h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie
h c h c h c
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this movie
h c h c
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie
h c
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

this movie

movie

this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie

loved this movie

loved this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I loved this movie

I loved this movie

Tree LSTM

I loved this movie

this is your root node 
for classification



Mini-batch SGD
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Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer It was boring *PAD*
h c h c h c h c

I loved this movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

movie

I

loved

this

It

was

boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this

It

was boring

movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this movie

It was boring

this movie

Tree LSTM

It was boring

this movie

was boringIt



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved this movie

It was boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

It was boringI loved this movie



Optional approach: Sentence + Sentiment + Syntax + Node-level sentiment
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1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



Summary
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Recap
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● Training basics

○ SGD

○ Backpropagation

○ Cross Entropy Loss

● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word order

● Sequence models: RNN and LSTM

○ Sensitive to word order

○ RNN has vanishing gradient problem, LSTM deals with this

○ LSTM has input, forget, and output gates that control information flow



Recap
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● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures 

○ Exploit compositionality, but require a parse tree

○ Transition sequence

● Mini-batch SGD



Extra
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Recap: Activation functions
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Child-Sum Tree LSTM
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useful for encoding 
dependency trees
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