
Natural Language Processing 1

Natural Language Processing 1
Lecture 6: Generalisation and word embeddings

Katia Shutova

ILLC
University of Amsterdam

13 November 2019

1 / 49

Natural Language Processing 1

Distributional word clustering

Outline.

Distributional word clustering

Semantics with dense vectors

2 / 49

Natural Language Processing 1

Distributional word clustering

Clustering

I clustering techniques group objects into clusters
I similar objects in the same cluster, dissimilar objects in

different clusters
I allows us to obtain generalisations over the data
I widely used in various NLP tasks:

I semantics (e.g. word clustering);
I summarization (e.g. sentence clustering);
I text mining (e.g. document clustering).

3 / 49

Natural Language Processing 1

Distributional word clustering

Distributional word clustering

We will:
I cluster words based on the contexts in which they occur
I assumption: words with similar meanings occur in similar

contexts, i.e. are distributionally similar
I we will consider noun clustering as an example
I cluster 2000 nouns – most frequent in the British National

Corpus
I into 200 clusters

4 / 49

Natural Language Processing 1

Distributional word clustering

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

5 / 49

Natural Language Processing 1

Distributional word clustering

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

6 / 49

Natural Language Processing 1

Distributional word clustering

Feature vectors

I can use different kinds of context as features for clustering
I window based context
I parsed or unparsed
I syntactic dependencies

I different types of context yield different results
I Example experiment: use verbs that take the noun as a

direct object or a subject as features for clustering
I Feature vectors: verb lemmas, indexed by dependency

type, e.g. subject or direct object
I Feature values: corpus frequencies

7 / 49

Natural Language Processing 1

Distributional word clustering

Extracting feature vectors: Examples

tree (Dobj)
85 plant_v
82 climb_v
48 see_v
46 cut_v
27 fall_v
26 like_v
23 make_v
23 grow_v
22 use_v
22 round_v
20 get_v
18 hit_v
18 fell_v
18 bark_v
17 want_v
16 leave_v
...

crop (Dobj)
76 grow_v
44 produce_v
16 harvest_v
12 plant_v
10 ensure_v
10 cut_v
9 yield_v
9 protect_v
9 destroy_v
7 spray_v
7 lose_v
6 sell_v
6 get_v
5 support_v
5 see_v
5 raise_v
...

tree (Subj)
131 grow_v
49 plant_v
40 stand_v
26 fell_v
25 look_v
23 make_v
22 surround_v
21 show_v
20 seem_v
20 overhang_v
20 fall_v
19 cut_v
18 take_v
18 go_v
18 become_v
17 line_v
...

crop (Subj)
78 grow_v
23 yield_v
10 sow_v
9 fail_v
8 plant_v
7 spray_v
7 come_v
6 produce_v
6 feed_v
6 cut_v
5 sell_v
5 make_v
5 include_v
5 harvest_v
4 follow_v
3 ripen_v
...

8 / 49

Natural Language Processing 1

Distributional word clustering

Feature vectors: Examples

tree
131 grow_v_Subj
85 plant_v_Dobj
82 climb_v_Dobj
49 plant_v_Subj
48 see_v_Dobj
46 cut_v_Dobj
40 stand_v_Subj
27 fall_v_Dobj
26 like_v_Dobj
26 fell_v_Subj
25 look_v_Subj
23 make_v_Subj
23 make_v_Dobj
23 grow_v_Dobj
22 use_v_Dobj
22 surround_v_Subj
22 round_v_Dobj
20 overhang_v_Subj
...

crop
78 grow_v_Subj
76 grow_v_Dobj
44 produce_v_Dobj
23 yield_v_Subj
16 harvest_v_Dobj
12 plant_v_Dobj
10 sow_v_Subj
10 ensure_v_Dobj
10 cut_v_Dobj
9 yield_v_Dobj
9 protect_v_Dobj
9 fail_v_Subj
9 destroy_v_Dobj
8 plant_v_Subj
7 spray_v_Subj
7 spray_v_Dobj
7 lose_v_Dobj
6 feed_v_Subj
...

9 / 49

Natural Language Processing 1

Distributional word clustering

Clustering algorithms, K-means

I many clustering algorithms are available
I example algorithm: K-means clustering

I given a set of N data points {x1, x2, ..., xN}
I partition the data points into K clusters C = {C1,C2, ...,CK}
I minimize the sum of the squares of the distances of each

data point to the cluster mean vector µi :

arg min
C

K∑
i=1

∑
x∈Ci

‖x− µi‖2 (1)

10 / 49

Natural Language Processing 1

Distributional word clustering

K-means clustering

11 / 49

Natural Language Processing 1

Distributional word clustering

Noun clusters

tree crop flower plant root leaf seed rose wood grain stem forest garden
consent permission concession injunction licence approval
lifetime quarter period century succession stage generation decade phase
interval future
subsidy compensation damages allowance payment pension grant
carriage bike vehicle train truck lorry coach taxi
official officer inspector journalist detective constable police policeman re-
porter
girl other woman child person people
length past mile metre distance inch yard
tide breeze flood wind rain storm weather wave current heat
sister daughter parent relative lover cousin friend wife mother husband
brother father

12 / 49

Natural Language Processing 1

Distributional word clustering

Different senses of run

The children ran to the store
If you see this man, run!
Service runs all the way to Cranbury
She is running a relief operation in Sudan
the story or argument runs as follows
Does this old car still run well?
Interest rates run from 5 to 10 percent
Who’s running for treasurer this year?
They ran the tapes over and over again
These dresses run small

13 / 49

Natural Language Processing 1

Distributional word clustering

Subject arguments of run

0.2125 drop tear sweat paint blood water juice
0.1665 technology architecture program system product version interface
software tool computer network processor chip package
0.1657 tunnel road path trail lane route track street bridge
0.1166 carriage bike vehicle train truck lorry coach taxi
0.0919 tide breeze flood wind rain storm weather wave current heat
0.0865 tube lock tank circuit joint filter battery engine device disk furniture
machine mine seal equipment machinery wheel motor slide disc instrument
0.0792 ocean canal stream bath river waters pond pool lake
0.0497 rope hook cable wire thread ring knot belt chain string
0.0469 arrangement policy measure reform proposal project programme
scheme plan course
0.0352 week month year
0.0351 couple minute night morning hour time evening afternoon

14 / 49

Natural Language Processing 1

Distributional word clustering

Subject arguments of run (continued)

0.0341 criticism appeal charge application allegation claim objection
suggestion case complaint
0.0253 championship open tournament league final round race match
competition game contest
0.0218 desire hostility anxiety passion doubt fear curiosity enthusiasm
impulse instinct emotion feeling suspicion
0.0183 expenditure cost risk expense emission budget spending
0.0136 competitor rival team club champion star winner squad county player
liverpool partner leeds
0.0102 being species sheep animal creature horse baby human fish male
lamb bird rabbit female insect cattle mouse monster
...

15 / 49

Natural Language Processing 1

Distributional word clustering

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

16 / 49

Natural Language Processing 1

Distributional word clustering

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

17 / 49

Natural Language Processing 1

Distributional word clustering

We can also cluster verbs...

sparkle glow widen flash flare gleam darken narrow flicker shine blaze
bulge
gulp drain stir empty pour sip spill swallow drink pollute seep flow drip
purify ooze pump bubble splash ripple simmer boil tread
polish clean scrape scrub soak
kick hurl push fling throw pull drag haul
rise fall shrink drop double fluctuate dwindle decline plunge decrease
soar tumble surge spiral boom
initiate inhibit aid halt trace track speed obstruct impede accelerate
slow stimulate hinder block
work escape fight head ride fly arrive travel come run go slip move

18 / 49

Natural Language Processing 1

Distributional word clustering

Uses of word clustering in NLP

Widely used in NLP as a source of lexical information:

I Word sense induction and disambiguation
I Modelling predicate-argument structure (e.g. semantic

roles)
I Identifying figurative language and idioms
I Paraphrasing and paraphrase detection
I Used in applications directly, e.g. machine translation,

information retrieval etc.

19 / 49

Natural Language Processing 1

Semantics with dense vectors

Outline.

Distributional word clustering

Semantics with dense vectors

20 / 49

Natural Language Processing 1

Semantics with dense vectors

Distributional semantic models

1. Count-based models:
I Explicit vectors: dimensions are elements in the context
I long sparse vectors with interpretable dimensions

2. Prediction-based models:
I Train a model to predict plausible contexts for a word
I learn word representations in the process
I short dense vectors with latent dimensions

21 / 49

Natural Language Processing 1

Semantics with dense vectors

Sparse vs. dense vectors

Why dense vectors?

I easier to use as features in machine learning
(less weights to tune)

I may generalize better than storing explicit counts
I may do better at capturing synonymy:

I e.g. car and automobile are distinct dimensions in
count-based models

I will not capture similarity between a word with car as a
neighbour and a word with automobile as a neighbour

22 / 49

Natural Language Processing 1

Semantics with dense vectors

Prediction-based distributional models

Mikolov et. al. 2013. Efficient Estimation of Word Representations in
Vector Space.

word2vec: Skip-gram model

I inspired by work on neural language models

I train a neural network to predict neighboring words

I learn dense embeddings for the words in the training corpus in
the process

23 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram

Slide credit: Tomas Mikolov
24 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram

Intuition: words with similar meanings often occur near each
other in texts

Given a word wt :
I Predict each neighbouring word

I in a context window of 2L words
I from the current word.

I For L = 2, we predict its 4 neighbouring words:

[wt−2,wt−1,wt+1,wt+2]

25 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Parameter matrices
Learn 2 embeddings for each word wj ∈ Vw :

I word embedding v , in word matrix W
I context embedding c, in context matrix C

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

j

26 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Setup

I Walk through the corpus pointing at word w(t), whose
index in the vocabulary is j — we will call it wj

I our goal is to predict w(t + 1), whose index in the
vocabulary is k — we will call it wk

I to do this, we need to compute

p(wk |wj)

I Intuition behind skip-gram: to compute this probability we
need to compute similarity between wj and wk

27 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Computing similarity
Similarity as dot-product between the target vector and context vector

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

Slide credit: Dan Jurafsky

28 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Similarity as dot product

I Remember cosine similarity?

cos(v1, v2) =
∑

v1k ∗ v2k√∑
v12

k ∗
√∑

v22
k

=
v1 · v2
||v1||||v2||

It’s just a normalised dot product.

I Skip-gram: Similar vectors have a high dot product

Similarity(ck , vj) ∝ ck · vj

29 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Compute probabilities

I Compute similarity as a dot product

Similarity(ck , vj) ∝ ck · vj

I Normalise to turn this into a probability
I by passing through a softmax function:

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

30 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Learning

I Start with some initial embeddings (usually random)
I At training time, walk through the corpus
I iteratively make the embeddings for each word

I more like the embeddings of its neighbors
I less like the embeddings of other words.

31 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Objective

Learn parameters C and W that maximize the overall corpus
probability:

arg max
∏

(wj ,wk)∈D

p(wk |wj)

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

arg max
∏

(wj ,wk)∈D

p(wk |wj) =
∏

(wj ,wk)∈D

eck ·vj∑
i∈V eci ·vj

32 / 49

Natural Language Processing 1

Semantics with dense vectors

Visualising skip-gram as a network

Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

33 / 49

Natural Language Processing 1

Semantics with dense vectors

One hot vectors

I A vector of length |V|
I 1 for the target word and 0 for other words
I So if “bear” is vocabulary word 5
I The one-hot vector is [0,0,0,0,1,0,0,0,0.........0]

Dan%Jurafsky

One<hot'vectors

• A%vector%of%length%|V|%
• 1%for%the%target%word%and%0%for%other%words
• So%if%“popsicle”%is%vocabulary%word%5
• The%one<hot'vector'is
• [0,0,0,0,1,0,0,0,0…….0]

28

0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

34 / 49

Natural Language Processing 1

Semantics with dense vectors

Visualising skip-gram as a network

Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

35 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

Problem with softmax: expensive to compute the denominator for the
whole vocabulary

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

Approximate the denominator: negative sampling

I At training time, walk through the corpus

I for each target word and positive context

I sample k noise samples or negative samples, i.e. other words

36 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I Objective in training:

I Make the word like the context words
lemon, a [tablespoon of apricot preserves or] jam.

c1 c2 w c3 c4

I And not like the k negative examples

[cement idle dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 w n5 n6 n7 n8

37 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Training examples
Convert the dataset into word pairs:

I Positive (+)

(apricot, tablespoon)
(apricot, of)
(apricot, jam)
(apricot, or)

I Negative (-)

(apricot, cement)
(apricot, idle)
(apricot, attendant)
(apricot, dear)
...

38 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I instead of treating it as a multi-class problem (and returning a
probability distribution over the whole vocabulary)

I return a probability that word wk is a valid context for word wj

P(+|wj ,wk)

P(−|wj ,wk) = 1− P(+|wj ,wk)

39 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I model similarity as dot product

Similarity(ck , vj) ∝ ck · vj

I turn this into a probability using the sigmoid function:

σ(x) =
1

1 + e−x

P(+|wj ,wk) =
1

1 + e−ck ·vj

P(−|wj ,wk) = 1−P(+|wj ,wk) = 1− 1
1 + e−ck ·vj

=
1

1 + eck ·vj

40 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I model similarity as dot product

Similarity(ck , vj) ∝ ck · vj

I turn this into a probability using the sigmoid function:

σ(x) =
1

1 + e−x

P(+|wj ,wk) =
1

1 + e−ck ·vj

P(−|wj ,wk) = 1−P(+|wj ,wk) = 1− 1
1 + e−ck ·vj

=
1

1 + eck ·vj

40 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
∏

(wj ,wk)∈D+

p(+|wk ,wj)
∏

(wj ,wk)∈D−

p(−|wk ,wj)

arg max
∑

(wj ,wk)∈D+

log p(+|wk ,wj) +
∑

(wj ,wk)∈D−

log p(−|wk ,wj) =

arg max
∑

(wj ,wk)∈D+

log
1

1 + e−ck ·vj
+

∑
(wj ,wk)∈D−

log
1

1 + eck ·vj

41 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
∏

(wj ,wk)∈D+

p(+|wk ,wj)
∏

(wj ,wk)∈D−

p(−|wk ,wj)

arg max
∑

(wj ,wk)∈D+

log p(+|wk ,wj) +
∑

(wj ,wk)∈D−

log p(−|wk ,wj) =

arg max
∑

(wj ,wk)∈D+

log
1

1 + e−ck ·vj
+

∑
(wj ,wk)∈D−

log
1

1 + eck ·vj

41 / 49

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
∏

(wj ,wk)∈D+

p(+|wk ,wj)
∏

(wj ,wk)∈D−

p(−|wk ,wj)

arg max
∑

(wj ,wk)∈D+

log p(+|wk ,wj) +
∑

(wj ,wk)∈D−

log p(−|wk ,wj) =

arg max
∑

(wj ,wk)∈D+

log
1

1 + e−ck ·vj
+

∑
(wj ,wk)∈D−

log
1

1 + eck ·vj

41 / 49

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings

They capture similarity
COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514

Slide credit: Ronan Collobert

42 / 49

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a,b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a− b ≈ c − d

man − woman ≈ king − queen

dw = argmax
d ′

w∈V
cos(a− b, c − d ′)

43 / 49

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a,b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a− b ≈ c − d

man − woman ≈ king − queen

dw = argmax
d ′

w∈V
cos(a− b, c − d ′)

43 / 49

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings

Capture analogy via vector offsets

man − woman ≈ king − queen

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov et al. 2013. Linguistic Regularities in Continuous Space
Word Representations

44 / 49

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture a range of semantic relationsTable 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Mikolov et al. 2013. Efficient Estimation of Word Representations in
Vector Space

45 / 49

Natural Language Processing 1

Semantics with dense vectors

Word embeddings in practice

Word2vec is often used for pretraining in other tasks.

I It will help your models start from an informed position
I Requires only plain text - which we have a lot of
I Is very fast and easy to use
I Already pretrained vectors also available (trained on 100B

words)

However, for best performance it is important to continue
training, fine-tuning the embeddings for a specific task.

46 / 49

Natural Language Processing 1

Semantics with dense vectors

Count-based models vs. skip-gram word embeddings

Baroni et. al. 2014. Don’t count, predict! A systematic comparison of
context-counting vs. context-predicting semantic vectors.

I Comparison of count-based and neural word vectors on 5 types
of tasks and 14 different datasets:

1. Semantic relatedness
2. Synonym detection
3. Concept categorization
4. Selectional preferences
5. Analogy recovery

47 / 49

Natural Language Processing 1

Semantics with dense vectors

Count-based models vs. skip-gram word embeddingsCount-based vs neural

Some of these conclusions are challenged by:
Levy et. al. 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings.Some of these findings were later disputed by Levy et. al. 2015. Improving

Distributional Similarity with Lessons Learned from Word Embeddings
48 / 49

Natural Language Processing 1

Semantics with dense vectors

Acknowledgement

Some slides were adapted from Dan Jurafsky and Marek Rei

49 / 49

	Distributional word clustering
	Semantics with dense vectors

