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Probabilistic language modelling

Outline.

Probabilistic language modelling

Part-of-speech (POS) tagging
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Probabilistic language modelling

Modelling word sequences

I We have seen the bag-of-words technique
I where each word is treated as independent from its context
I In reality, word likelihood depends on context
I This lecture introduces shallow syntax:

language modelling, i.e. modelling word sequences using
statistical techniques
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Probabilistic language modelling

Statistical techniques: NLP and linguistics

But it must be recognized that the notion ‘probability of
a sentence’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Whenever I fire a linguist our system performance
improves. (Jelinek, 1988: reported)
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Probabilistic language modelling

Corpora

I corpus: text that has been collected for some purpose.
I balanced corpus: texts representing different genres

genre is a type of text (vs domain)
I tagged corpus: a corpus annotated with e.g. POS tags
I treebank: a corpus annotated with parse trees
I specialist corpora — e.g., collected to train or evaluate

particular applications
I Movie reviews for sentiment classification
I Data collected from simulation of a dialogue system

5 / 44



Natural Language Processing 1

Probabilistic language modelling

Language modelling and word prediction

Guess the missing word:

Wright tells her story with great .
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Probabilistic language modelling

Language modelling and word prediction

Guess the missing word:

Wright tells her story with great professionalism .
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Probabilistic language modelling

Uses of language modelling

I speech recognition to disambiguate results from signal
processing:

I have an ice Dave
I heaven ice day
I have a nice day

I word prediction for communication aids:
e.g., to help enter text that’s input to a synthesiser

I text entry on mobile devices
I spelling correction
I ...
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Probabilistic language modelling

n-grams

Bigram: n-gram with N=2

I A probability is assigned to a word based on the previous
word:

P(wn|wn−1)

where wn is the nth word in a sentence.
I Probability of a sequence of words

(assuming independence):

P(W n
1 ) ≈

n∏
k=1

P(wk |wk−1)
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Probabilistic language modelling

n-grams
Trigram: n-gram with N=3

I A probability is assigned to a word based on two
previous words:

P(wn|wn−1wn−2)

where wn is the nth word in a sentence.
I Probability of a sequence of words

(assuming independence):

P(W n
1 ) ≈

n∏
k=1

P(wk |wk−1wk−2)
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Probabilistic language modelling

bigrams: probability estimation

Maximum likelihood estimation:

Probability is estimated from counts in a training corpus:

P(wn|wn−1) =
C(wn−1wn)∑
w C(wn−1w)

≈ C(wn−1wn)

C(wn−1)

i.e. count of a particular bigram in the corpus divided by the
count of all bigrams starting with the prior word.
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Probabilistic language modelling

〈s〉 good morning 〈/s〉 〈s〉 good afternoon 〈/s〉 〈s〉 good
afternoon 〈/s〉 〈s〉 it is very good 〈/s〉 〈s〉 it is good 〈/s〉

sequence count bigram probability
〈s〉 5
〈s〉 good 3 .6
〈s〉 it 2 .4
good 5
good morning 1 .2
good afternoon 2 .4
good 〈/s〉 2 .4
...
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Probabilistic language modelling

Sentence probabilities

〈s〉 good morning 〈/s〉 〈s〉 good afternoon 〈/s〉 〈s〉 good
afternoon 〈/s〉 〈s〉 it is very good 〈/s〉 〈s〉 it is good 〈/s〉

Probability of 〈s〉 it is good afternoon 〈/s〉 is estimated as:
P(it|〈s〉)P(is|it)P(good|is)P(afternoon|good)P(〈/s〉|afternoon)
= .4× 1× .5× .4× 1 = .08

What about the probability of 〈s〉 very good 〈/s〉 ?
P(very|〈s〉)?
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Probabilistic language modelling

Sentence probabilities

Problems because of sparse data:
I smoothing: distribute ‘extra’ probability between rare and

unseen events
I backoff and interpolation: approximate unseen

probabilities by a more general probability, e.g. unigrams
cf Chomsky: Colorless green ideas sleep furiously
smoothing means unseen phrases have a non-zero probability
estimate.
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Probabilistic language modelling

Laplace (add 1) smoothing

P(wn|wn−1) =
C(wn−1wn) + 1
C(wn−1) + |V |

I simple to implement, BUT
I only suitable for problems with few unseen events
I we have a lot of unseen n-grams

But add-1 is used to smooth other NLP models:
I e.g. for text classification
I in domains where the number of zeros isn’t so huge
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Probabilistic language modelling

Backoff and Interpolation

I Sometimes it helps to use less context
I Condition on less context for contexts you haven’t learned

much about
I Backoff

I use trigram if you have good evidence,
I otherwise bigram, otherwise unigram

I Interpolation
I mix unigram, bigram, trigram
I Interpolation works better
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Probabilistic language modelling

Linear interpolation

I Combine different order n-grams
I by linearly interpolating all the models:

P̂(wn|wn−1wn−2) = λ1P(wn|wn−1wn−2)+λ2P(wn|wn−1)+λ3P(wn),

such that
∑

i λi = 1

I λs are learned from a held-out corpus
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Probabilistic language modelling

More options

Advanced smoothing methods:

I Absolute discounting
I Good Turing smoothing
I Kneser-Ney smoothing
I ...

See Chapter 3 in Jurafsky & Martin (3 edition) for more details

I Neural language models (later in the course)
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Probabilistic language modelling

Handling unknown words

I Most tasks in NLP are open vocabulary tasks
I Test data will contain out of vocabulary (OOV) words
I Create an unknown word token <UNK>
I Train <UNK> probabilities

I Create a fixed lexicon L of size V
I in the corpus, replace all words not in L with <UNK>
I train its probabilities like a normal word
I use UNK probabilities for any OOV word
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Probabilistic language modelling

Using n-grams to generate sequences

Some Shakespeare...

Dan*Jurafsky

Approximating'Shakespeare

10 CHAPTER 4 • N-GRAMS

Imagine all the words of English covering the probability space between 0 and 1,
each word covering an interval proportional to its frequency. We choose a random
value between 0 and 1 and print the word whose interval includes this chosen value.
We continue choosing random numbers and generating words until we randomly
generate the sentence-final token </s>. We can use the same technique to generate
bigrams by first generating a random bigram that starts with <s> (according to its
bigram probability), then choosing a random bigram to follow (again, according to
its bigram probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and 4-gram
models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 4.3 Eight sentences randomly generated from four N-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This
is because, not to put the knock on Shakespeare, his oeuvre is not very large as
corpora go (N = 884,647,V = 29,066), and our N-gram probability matrices are
ridiculously sparse. There are V 2 = 844,000,000 possible bigrams alone, and the
number of possible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen
the first 4-gram (It cannot be but), there are only five possible continuations (that, I,
he, thou, and so); indeed, for many 4-grams, there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at an
N-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our N-grams for the two genres. Fig. 4.4
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superfi-
cially they both seem to model “English-like sentences”, there is obviously no over-
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Probabilistic language modelling

Using n-grams to generate sequences

Wall Street Journal

Dan*Jurafsky

The'wall'street'journal'is'not'shakespeare'
(no'offense)

4.3 • GENERALIZATION AND ZEROS 11

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 4.4 Three sentences randomly generated from three N-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

lap whatsoever in possible sentences, and little if any overlap even in small phrases.
This stark difference tells us that statistical models are likely to be pretty useless as
predictors if the training sets and the test sets are as different as Shakespeare and
WSJ.

How should we deal with this problem when we build N-gram models? One way
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

Matching genres is still not sufficient. Our models may still be subject to the
problem of sparsity. For any N-gram that occurred a sufficient number of times,
we might have a good estimate of its probability. But because any corpus is limited,
some perfectly acceptable English word sequences are bound to be missing from it.
That is, we’ll have a many cases of putative “zero probability N-grams” that should
really have some non-zero probability. Consider the words that follow the bigram
denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros— things things that don’t ever occur in the training set but do occurzeros

in the test set—are a problem for two reasons. First, they means we are underes-
timating the probability of all sorts of words that might occur, which will hurt the
performance of any application we want to run on this data.

Second, if the probability of any word in the testset is 0, the entire probability of
the test set is 0. But the definition of perplexity is based on the inverse probability
of the test set. If some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!
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Probabilistic language modelling

Limitations of n-gram models

I In general this is an insufficient model of language
I because language has long-distance dependencies:

The computer which I had just put into the
machine room on the fifth floor is crashing.

I But we can often get away with N-gram models
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Probabilistic language modelling

Evaluation of language models

1. Intrinsic evaluation
I evaluate directly on a test set designed for the task at hand
I using some metric
I for LMs — perplexity

2. Extrinsic evaluation
I evaluate in the context of some external task
I e.g. speech recognition, machine translation
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Probabilistic language modelling

Perplexity
Intuition: The best language model is one that best predicts an
unseen test set (i.e. with the highest probability)

I Perplexity is the inverse probability of the test set, normalized by
the number of words:

PP(W ) = P(w1,w2, ...,wN)
− 1

N = N

√
1

P(w1,w2, ...,wN)

I For bigrams:

PP(W ) = N

√
1∏n

k=1 P(wk |wk−1)

I Minimize perplexity
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Probabilistic language modelling

Lower perplexity = better model

I Wall Street Journal corpus
I Train on 38 million words
I test on 1.5 million words

Dan*Jurafsky

Lower'perplexity'='better'model

• Training*38*million*words,*test*1.5*million*words,*WSJ

NMgram'
Order

Unigram Bigram Trigram

Perplexity 962 170 109
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Probabilistic language modelling

Problem with intrinsic evaluation of LMs

I depends on how different the test and training set are
I not comparable across datasets
I but useful for pilot experimentation

So extrinsic evaluation is better, but time-consuming
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Part-of-speech (POS) tagging

Part of speech tagging

They can fish.

I They_pronoun can_modal fish_verb.
(‘can’ meaning ‘are able to’)

I They_pronoun can_verb fish_plural-noun.
(‘can’ meaning ‘put into cans’)

Ambiguity
can: modal verb, verb, singular noun
fish: verb, singular noun, plural noun
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Part-of-speech (POS) tagging

Tagset (CLAWS 5)

tagset: standardized codes for fine-grained parts of speech.
CLAWS 5: over 60 tags, including:

NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb

I They_PNP can_VM0 fish_VVI ._PUN
I They_PNP can_VVB fish_NN2 ._PUN
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Part-of-speech (POS) tagging

POS tagging: Why do we care?

I First step towards syntactic analysis (which in turn, is often
useful for semantic analysis).

I Simpler models and often faster than full syntactic parsing,
but sometimes enough to be useful

I POS tags can be useful features in e.g. text classification,
authorship identification, etc.

I Useful for applications such as text to speech synthesis: “it
is time to wind the clock up” versus “the wind was strong”

30 / 44



Natural Language Processing 1

Part-of-speech (POS) tagging

Extent of POS Ambiguity

The Brown corpus (1,000,000 word tokens) has 39,440
different word types.

I 35340 have only 1 POS tag anywhere in corpus (89.6%)
I 4100 (10.4%) have 2 to 7 POS tags

So why does just 10.4% POS-tag ambiguity by word type lead
to difficulty?
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Part-of-speech (POS) tagging

Extent of POS Ambiguity

The Brown corpus (1,000,000 word tokens) has 39,440
different word types.

I 35340 have only 1 POS tag anywhere in corpus (89.6%)
I 4100 (10.4%) have 2 to 7 POS tags

So why does just 10.4% POS-tag ambiguity by word type lead
to difficulty?

Many high-frequency words have more than one POS tag.
In fact, around 50% of the word tokens are ambiguous.
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Part-of-speech (POS) tagging

Word Frequencies in Different languages

Ambiguity by part-of-speech tags:

Language Type-ambiguity Token-ambiguity
English 13.2% 56.2%
Greek <1% 19.14%

Japanese 7.6% 50.2%
Czech <1% 14.5%
Turkish 2.5% 35.2%
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Part-of-speech (POS) tagging

Some tagging strategies

I One simple strategy: just assign to each word its most
common tag. (Call this Uni-gram tagging)

I Surprisingly, even this crude approach typically gives
around 90% accuracy. (State-of-the-art (English) is 97 -
98%).

I Can we do better?
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Part-of-speech (POS) tagging

Part of speech tagging using Hidden Markov Models
(HMM)

1. Start with untagged text.
2. Assign all possible tags to each word in the text on the

basis of a lexicon that associates words and tags.
3. Find the most probable sequence (or n-best sequences) of

tags, based on probabilities from the training data.
I lexical probability: e.g., is can most likely to be VM0, VVB,

VVI or NN1?
I and tag sequence probabilities: e.g., is VM0 or NN1 more

likely after PNP?
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Part-of-speech (POS) tagging

Assigning probabilities

Estimate tag sequence: n tags with the maximum probability,
given n words:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1 )

By Bayes theorem:

P(tn
1 |wn

1 ) =
P(wn

1 |tn
1 )P(tn

1 )

P(wn
1 )

but P(wn
1 ) is constant:

t̂n
1 = argmax

tn
1

P(wn
1 |tn

1 )P(tn
1 )
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Part-of-speech (POS) tagging

Bigrams
Bigram assumption: probability of a tag depends on previous
tag, hence product of bigrams:

P(tn
1 ) ≈

n∏
i=1

P(ti |ti−1)

Probability of word estimated on basis of its tag alone:

P(wn
1 |tn

1 ) ≈
n∏

i=1

P(wi |ti)

Hence:

t̂n
1 = argmax

tn
1

n∏
i=1

P(wi |ti)P(ti |ti−1)
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Part-of-speech (POS) tagging

Example

Tagging: they fish (ignoring punctuation)
Assume PNP is the only tag for they, and that fish could be
NN2 or VVB.
Then the estimate for PNP NN2 will be:

P(they|PNP) P(NN2|PNP) P(fish|NN2)

and for PNP VVB:

P(they|PNP) P(VVB|PNP) P(fish|VVB)
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Part-of-speech (POS) tagging

Training the POS tagger

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP
those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0
people_NN2 fish_VVB in_PRP these_DT0 areas_NN2
._PUN

sequence count bigram probability
NN2 4
NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25

Also lexicon: fish NN2 VVB
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Part-of-speech (POS) tagging

Applying in practice

I Maximise the overall tag sequence probability
I Actual systems use trigrams — smoothing and backoff are

critical.
I Unseen words: these are not in the lexicon, so use all

possible open class tags, possibly restricted by
morphology.
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Part-of-speech (POS) tagging

Evaluation of POS tagging

I percentage of correct tags, i.e. accuracy
I one tag per word (some systems give multiple tags when

uncertain)
I accuracy over 97% for English (but note punctuation is

unambiguous)
I baseline of taking the most common tag gives 90%

accuracy
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Part-of-speech (POS) tagging

Examples of PoS tagging errors

Turkey will keep for several days in a fridge.

Turkey_NP0 will_VM0 keep_VVI for_PRP several_DT0
days_NN2 in_PRP a_AT0 fridge_NN1

We have hope that the next year will be peaceful.

We_PNP have_VHB hope_VVB that_CJT the_AT0 next_ORD
year_NN1 will_VM0 be_VBI peaceful_AJ0
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Part-of-speech (POS) tagging

Other tagging or sequence labelling tasks

I Named entity recognition: e.g., label words as belonging to
persons, organizations, locations, or none of the above:

Barack/PER Obama/PER spoke/NON from/NON
the/NON White/LOC House/LOC today/NON ./NON

I Information field segmentation: Given specific type of text
(e.g. classified advert), identify which words belong to
which fields (e.g. price/ size/ location)

3BR/SIZE flat/TYPE in/NON Bruntsfield/LOC ,/NON
near/LOC main/LOC roads/LOC ./NON Bright/FEAT
,/NON well/FEAT maintained/FEAT ...

Correct tags depend on the sequence of words.
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Part-of-speech (POS) tagging
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