Natural Language Processing 1

Katia Shutova

ILLC University of Amsterdam

28 October 2019

< 日 > < 同 > < 回 > < 回 > < □ > <

э

1/52

Lecture 1: Introduction

Overview of the course NLP applications Why NLP is hard Sentiment classification Overview of the practical Natural Language Processing 1

-Lecture 1: Introduction

-Overview of the course

Taught by...

Katia Shutova Lecturer e.shutova@uva.nl

Sandro Pezzelle Lab & practical coordinator

s.pezzelle@uva.nl

Reshmi G. P. Senior TA

reshmi.g85@gmail.com

-Overview of the course

Teaching assistants

Phillip Lippe

Sohi Sudhir

Rishav Hada

Shantanu Chandra

Pere-Lluis Huguet Cabot

Jaap Jumelet

Mario Guilianelli

Overview of the course

Overview of the course

- Introduction and broad overview of NLP
- Different levels of language analysis (word, sentence, larger text fragments)
- A range of NLP tasks and applications
- Both fundamental and most recent methods:
 - rule-based
 - statistical
 - deep learning
- Other NLP courses go into much greater depth

-Overview of the course

Assessment

- 1. Practical assignments (50%)
 - Work in groups of 2
 - Implement several language processing methods
 - Evaluate in the context of a real-world NLP application sentiment classification
 - Assessed by two reports (20% + 30%)
 - Practical 1: Mid-term report, deadline 13 November
 - Practical 2: Final report, deadline 10 December
- 2. Pen-and-paper exercises (individual work) (10%)
 - throughout the course
 - feedback from TAs
- 3. Exam on 17 December (40%)

Need to pass all components to get a passing grade

Also note:

Course materials and more info:

https://cl-illc.github.io/nlp1-2019/

Contact

- Main contact your TA (email on the website)
- Katia: e.shutova@uva.nl
- Sandro: s.pezzelle@uva.nl

Subject line should have NLP1-19

Email your TA by Weds, 30 October with details of your group.

- names of the students
- their email addresses

-Overview of the course

Course Materials

- Slides, further reading, assignments posted on the website
- but... assignment submission will be via Canvas.
- Book: Jurafsky & Martin, Speech and Language Processing (2nd edition)

3 edition (unofficial) at

https://web.stanford.edu/~jurafsky/slp3/

 For most topics, additional (optional) readings of research papers put up on the website.

What is NLP?

NLP: the computational modelling of human language.

Many popular applications

...and the emerging ones

└─NLP applications

Machine Translation

- Translate from one language into another
- Earliest attempted NLP application
- Early systems based on transfer rules, then statistical and now neural MT
- High quality with typologically close languages: e.g. Swedish-Danish.
- More challenging with typologically distant languages and low-resource languages

Retrieving information

- Information retrieval: return documents in response to a user query (Internet Search is a special case)
- Information extraction: discover specific information from a set of documents (e.g. companies and their founders)
- Question answering: answer a specific user question by returning a section of a document:

What is the capital of France?

Paris has been the French capital for many centuries.

Natural Language Processing 1
Lecture 1: Introduction
NLP applications

Opinion mining and sentiment analysis

- Finding out what people think about politicians, products, companies etc.
- Increasingly done on web documents and social media
- More about this later today

Recently emerged applications

Automated fact checking

- classify statements and news articles as factual or not
- in an effort to combat misinformation

Abusive language detection

- automated detection and moderation of online abuse
- hate speech, racism, sexism, personal attacks, cyberbullying etc.

Other areas in which NLP is relevant

NLP and computer vision

 Caption generation for images and videos

Digital humanities

 e.g. social network in *Pride and Prejudice*

Computational social science

 analyse human behaviour based on language use (deeper than sentiment)

The dog chewed at the shoes

NLP and linguistics

- 1. Morphology the structure of words: lecture 3.
- Syntax the way words are used to form phrases: lectures 2 and 3.
- 3. Semantics
 - Lexical semantics the meaning of individual words: lectures 4, 5 and 6.
 - Compositional semantics the construction of meaning of longer phrases and sentences (based on syntax): lecture 7.
- 4. Pragmatics meaning in context: lecture 8.

Ambiguity: same strings can mean different things

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Multiple: I saw her duck

Finally, a computer that understands you like your mother!

Ambiguity: same strings can mean different things

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Multiple: I saw her duck

Finally, a computer that understands you like your mother!

Ambiguity: same strings can mean different things

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Multiple: I saw her duck

Finally, a computer that understands you like your mother!

Ambiguity: same strings can mean different things

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Multiple: I saw her duck

Finally, a computer that understands you like your mother!

Ambiguity: same strings can mean different things

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Multiple: I saw her duck

Finally, a computer that understands you like your mother!

Natural Language Processing 1

Why NLP is hard

Real examples from newspaper headlines

Iraqi head seeks arms

Stolen painting found by tree Teacher strikes idle kids

Natural Language Processing	1
Lecture 1: Introduction	

Why NLP is hard

Real examples from newspaper headlines

Iraqi head seeks arms Stolen painting found by tree Teacher strikes idle kids

Natural Language Processing	1
Lecture 1: Introduction	

Why NLP is hard

Real examples from newspaper headlines

Iraqi head seeks arms Stolen painting found by tree Teacher strikes idle kids

Synonymy and variability: different strings can mean the same or similar things

Did Google buy YouTube?

- 1. Google purchased YouTube
- 2. Google's acquisition of YouTube
- 3. Google acquired every company
- 4. YouTube may be sold to Google
- 5. Google didn't take over YouTube

Wouldn't it be better if ...?

The properties which make natural language difficult to process are essential to human communication:

- Flexible
- Learnable, but expressive and compact
- Emergent, evolving systems

Synonymy and ambiguity go along with these properties.

Natural language communication can be indefinitely precise:

- Ambiguity is mostly local (for humans)
- resolved by immediate context
- but requires world knowledge

Wouldn't it be better if ...?

The properties which make natural language difficult to process are essential to human communication:

- Flexible
- Learnable, but expressive and compact
- Emergent, evolving systems

Synonymy and ambiguity go along with these properties.

Natural language communication can be indefinitely precise:

- Ambiguity is mostly local (for humans)
- resolved by immediate context
- but requires world knowledge

World knowledge...

"Knowledge is knowing that a tomato is a fruit"

BUT

"Wisdom is knowing not to put it in a fruit salad"

- Impossible to hand-code at a large-scale
- either limited domain applications
- or learn approximations from the data

-Sentiment classification

Opinion mining: what do they think about me?

- Task: scan documents (webpages, tweets etc) for positive and negative opinions on people, products etc.
- Find all references to entity in some document collection: list as positive, negative (possibly with strength) or neutral.
- Construct summary report plus examples (text snippets).
- Fine-grained classification:
 e.g., for phone, opinions about: overall design, display, camera.

Sentiment classification

LG G3 review (Guardian 27/8/2014)

The shiny, brushed effect makes the G3's plastic design looks deceptively like metal. It feels solid in the hand and the build quality is great — there's minimal give or flex in the body. It weighs 149g, which is lighter than the 160g HTC One M8, but heavier than the 145g Galaxy S5 and the significantly smaller 112g iPhone 5S.

Sentiment classification

LG G3 review (Guardian 27/8/2014)

The shiny, brushed effect makes the G3's plastic **design** looks deceptively like metal. It feels solid in the hand and the build quality is great — there's minimal give or flex in the body. It weighs 149g, which is lighter than the 160g HTC One M8, but heavier than the 145g Galaxy S5 and the significantly smaller 112g iPhone 5S.

Sentiment classification

LG G3 review (Guardian 27/8/2014)

The shiny, brushed effect makes the G3's plastic **design** looks deceptively like metal. It feels solid in the hand and the **build quality** is great — there's minimal give or flex in the body. It weighs 149g, which is lighter than the 160g HTC One M8, but heavier than the 145g Galaxy S5 and the significantly smaller 112g iPhone 5S.

Sentiment classification

LG G3 review (Guardian 27/8/2014)

The shiny, brushed effect makes the G3's plastic **design** looks deceptively like metal. It feels solid in the hand and the **build quality** is great — there's minimal give or flex in the body. It **weighs** 149g, which is lighter than the 160g HTC One M8, but heavier than the 145g Galaxy S5 and the significantly smaller 112g iPhone 5S.

Sentiment classification

LG G3 review (Guardian 27/8/2014)

The shiny, brushed effect makes the G3's plastic **design** looks deceptively like metal. It feels solid in the hand and the **build quality** is great — there's minimal give or flex in the body. It **weighs** 149g, which is lighter than the 160g HTC One M8, but heavier than the 145g Galaxy S5 and the significantly smaller 112g iPhone 5S.

-Sentiment classification

Sentiment classification: the research task

- Full task: information retrieval, cleaning up text structure, named entity recognition, identification of relevant parts of text. Evaluation by humans.
- Research task: preclassified documents, topic known, opinion in text along with some straightforwardly extractable score.
- Pang et al. 2002: Thumbs up? Sentiment Classification using Machine Learning Techniques
- Movie review corpus: strongly positive or negative reviews from IMDb, 50:50 split, with rating score.

Sentiment classification

Sentiment analysis as a text classification problem

► Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

イロン イロン イヨン イヨン

28/52

- Output:
 - ▶ a predicted class c ∈ C

Sentiment classification

IMDb: An American Werewolf in London (1981)

Rating: 9/10

Ooooo. Scary. The old adage of the simplest ideas being the best is once again demonstrated in this, one of the most entertaining films of the early 80's, and almost certainly Jon Landis' best work to date. The script is light and witty, the visuals are great and the atmosphere is top class. Plus there are some great freeze-frame moments to enjoy again and again. Not forgetting, of course, the great transformation scene which still impresses to this day. In Summary: Top banana

Sentiment classification

Bag of words representation

Treat the reviews as collections of individual words.

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

-Sentiment classification

Bag of words representation

- Classify reviews according to positive or negative words.
- Could use word lists prepared by humans sentiment lexicons
- but machine learning based on a portion of the corpus (training set) is preferable.
- Use human rankings for training and evaluation.

Sentiment classification

Supervised classification

- ► Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
 - ► a training set of *m* hand-labeled documents (*d*₁, *c*₁), ..., (*d_m*, *c_m*)
- Output:
 - a learned classifier $\gamma : \mathbf{d} \rightarrow \mathbf{c}$

-Sentiment classification

Classification methods

Many classification methods available

- Naive Bayes
- Logistic regression
- Decision trees
- k-nearest neighbors
- Support vector machines

・ロン ・四 ・ ・ ヨン ・ ヨン

33/52

▶ ...

-Sentiment classification

Documents as feature vectors

The document d is represented as a feature vector f:

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

	it	6
	I.	5
	the	4
	to	3
	and	3
	seen	2
	yet	1
	would	1
	whimsical	1
\rightarrow	times	1
	sweet	1
	satirical	1
	adventure	1
	genre	1
	fairy	1
	humor	1
	have	1
	great	1

- Sentiment classification

Naive Bayes classifier

Choose most probable class given a feature vector \vec{f} :

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(c|\vec{f})$$

Apply Bayes Theorem:

$${m P}({m c}ert ec f) = rac{{m P}(ec fert c){m P}({m c})}{{m P}(ec f)}$$

Constant denominator:

$$\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} P(ec{f}|c) P(c)$$

- Sentiment classification

Naive Bayes: feature independence

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(\vec{f}|c) P(c)$$

Problem: need a very, very large corpus to estimate $P(\vec{f}|c)$

$$P(\vec{f}|c) = P(f_1, f_2, ..., f_n|c)$$

Conditional independence assumption ('naive'): assume the feature probabilities $P(f_i|c)$ are independent given the class *c*.

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i=1}^{n} P(f_i | c)$$

- Sentiment classification

Naive Bayes: feature independence

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(\vec{f}|c) P(c)$$

Problem: need a very, very large corpus to estimate $P(\vec{f}|c)$

$$P(\vec{f}|c) = P(f_1, f_2, ..., f_n|c)$$

Conditional independence assumption ('naive'): assume the feature probabilities $P(f_i|c)$ are independent given the class *c*.

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(f_i | c)$$

- Sentiment classification

Naive Bayes: Learning the model

Maximum likelihood estimation: use frequencies in the data

$$\hat{P}(c) = rac{Doccount(c)}{N_{doc}}$$

$$\hat{P}(f_i|c) = rac{count(f_i,c)}{\sum_{f \in V} count(f,c)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-Sentiment classification

Problem with maximum likelihood

What if we have seen no training documents with the word *fantastic* and classified as **positive**?

$$\hat{P}(fantastic|positive) = rac{count(fantastic, positive)}{\sum_{f \in V} count(f, positive)} = 0$$

Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\hat{c} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(f_i | c)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sentiment classification

Laplace smoothing for Naive Bayes

Smoothing is a way to handle data sparsity

Laplace (also called "add 1") smoothing:

$$\hat{P}(f_i|c) = \frac{count(f_i, c) + 1}{\sum_{f \in V} (count(f, c) + 1)} = \frac{count(f_i, c) + 1}{\sum_{f \in V} count(f, c) + |V|}$$

<ロ><一><一><一><一><一><一><一</td>39/52

- Sentiment classification

Log space

Use log space to prevent arithmetic underflow.

- Multiplying lots of probabilities can result in floating-point underflow
- sum logs of probabilities instead of multiplying probabilities

$$\log(xy) = \log(x) + \log(y)$$

 class with the highest log probability score is still the most probable

$$\hat{c} = \operatorname*{argmax}_{c \in C}(\log P(c) + \sum_{i=1}^{n} \log P(f_i|c))$$

- Sentiment classification

Test sets and cross-validation

Divide the corpus into

- training set to train the model
- development set to optimize its parameters
- test set kept unseen to avoid overfitting

or...

use cross-validation over multiple splits

- divide the corpus into e.g. 10 parts
- train on 9 parts, test on 1 part
- average results from all splits

- Sentiment classification

Evaluation

Accuracy:

 $Accuracy = \frac{Number of correctly classified instances}{Total number of instances}$

Pang et al. (2002):

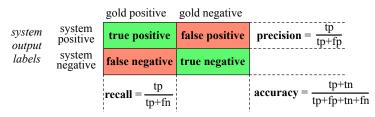
- The corpus is artificially balanced
- Chance success is 50%
- Bag-of-words achieves an accuracy of 80%.

Sentiment classification

Precision and Recall

What if the corpus were not balanced?

- Precision: % of selected items that are correct
- Recall: % of correct items that are selected



gold standard labels

Sentiment classification

F-measure

Also called F-score

$$m{F}_eta = rac{(eta^2+1)PR}{eta^2P+R}$$

 β controls the importance of recall and precision

 $\beta = 1$ is typically used:

$$F_1 = rac{2PR}{P+R}$$

- Sentiment classification

Error analysis

Bag-of-words gives 80% accuracy in sentiment analysis

Some sources of errors:

Negation:

Ridley Scott has never directed a bad film.

- Overfitting the training data: e.g., if training set includes a lot of films from before 2005, *Ridley* may be a strong positive indicator, but then we test on reviews for 'Kingdom of Heaven'?
- Comparisons and contrasts.

-Sentiment classification

Contrasts in the discourse

This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up.

Sentiment classification

More contrasts

AN AMERICAN WEREWOLF IN PARIS is a failed attempt ... Julie Delpy is far too good for this movie. She imbues Serafine with spirit, spunk, and humanity. This isn't necessarily a good thing, since it prevents us from relaxing and enjoying AN AMERICAN WEREWOLF IN PARIS as a completely mindless, campy entertainment experience. Delpy's injection of class into an otherwise classless production raises the specter of what this film could have been with a better script and a better cast ... She was radiant, charismatic, and effective ...

- Sentiment classification

Doing sentiment classification 'properly'?

- Morphology, syntax and compositional semantics: who is talking about what, what terms are associated with what, tense ...
- Lexical semantics: are words positive or negative in this context? Word senses (e.g., *spirit*)?
- Pragmatics and discourse structure: what is the topic of this section of text? Pronouns and definite references.
- Getting all this to work well on arbitrary text is very hard.
- Ultimately the problem is Al-complete, but can we do well enough for NLP to be useful?

- Sentiment classification

Human translation?

Sentiment classification

Human translation?

I am not in the office at the moment. Please send any work to be translated.

-Overview of the practical

Sentiment analysis practical: Part 1

Sentiment classification of movie reviews

- 1. Sentiment classification with a sentiment lexicon
- 2. Implement Naive Bayes classifier with bag-of-word features
- 3. Model grammar: word order and part of speech tags
- 4. Experiment with support vector machines (SVM) classifier
- 5. Evaluate and compare different methods

Assessed by the mid-term report, deadline 13 November

-Overview of the practical

Sentiment analysis practical: Part 1

Sentiment classification of movie reviews

- 1. Sentiment classification with a sentiment lexicon
- 2. Implement Naive Bayes classifier with bag-of-word features
- 3. Model grammar: word order and part of speech tags
- 4. Experiment with support vector machines (SVM) classifier
- 5. Evaluate and compare different methods

Assessed by the mid-term report, deadline 13 November

-Overview of the practical

Sentiment analysis practical: Part 2

- Experiment within a deep learning framework
- Include semantics
- Model the meaning of words, phrases and sentences
- Evaluate in the sentiment classification task

Assessed by the final report, deadline 10 December

-Overview of the practical

Sentiment analysis practical: Part 2

- Experiment within a deep learning framework
- Include semantics
- Model the meaning of words, phrases and sentences
- Evaluate in the sentiment classification task

Assessed by the final report, deadline 10 December

Overview of the practical

Acknowledgement

Some slides were adapted from Ann Copestake, Dan Jurafsky and Tejaswini Deoskar