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Data sparsity

We have so far dealt with categorical models using tabular CPDs
I we’ve encountered problems for maximum likelihood

estimation due to data sparsity
I large n-grams lead to large tables O(vn)
I even the emission distributions of HMMs had to be smoothed
I smoothing techniques can be rather brittle

Are there principled ways to tackle data sparsity?

Let’s check a running example based on sentiment classification
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Example: sentiment classification

How can we identify whether a sentence is positive or negative
towards a subject?
I This movie is slow and repetitive, clearly the direction was

careless and the production cheap.
I The movie is quite funny, its spiced humor makes it very

interesting.

If y is the sentiment of some text x, then we would like to
compute PY |X(y|x), but
I x is very sparse!
I how could we possibly parameterise it?
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Feature functions
Suppose we identify a number of words which typically express
sentiment, let’s call them features

Class Features (or attributes)
Negative cheap, slow, repetitive, careless, awful, bad,

...
Positive funny, spiced, interesting, awesome, good,

...

and let’s say we have a vocabulary F of v such sentiment words

Then for an example
x = ‘This film is fun though shy on the action’ with sentiment
y = +, let us retain only the sentiment words:
I 〈‘fun’, ‘shy’, ‘though’, ‘action’〉 =

sentwords(‘This film is fun though shy on the action’)
I we will denote this by a random pair (Y, 〈F1, . . . , Fn〉)

Wilker Aziz NTMI 2019 - week 6a 3



Feature functions
Suppose we identify a number of words which typically express
sentiment, let’s call them features

Class Features (or attributes)
Negative cheap, slow, repetitive, careless, awful, bad,

...
Positive funny, spiced, interesting, awesome, good,

...

and let’s say we have a vocabulary F of v such sentiment words

Then for an example
x = ‘This film is fun though shy on the action’ with sentiment
y = +, let us retain only the sentiment words:
I 〈‘fun’, ‘shy’, ‘though’, ‘action’〉 =

sentwords(‘This film is fun though shy on the action’)

I we will denote this by a random pair (Y, 〈F1, . . . , Fn〉)

Wilker Aziz NTMI 2019 - week 6a 3



Feature functions
Suppose we identify a number of words which typically express
sentiment, let’s call them features

Class Features (or attributes)
Negative cheap, slow, repetitive, careless, awful, bad,

...
Positive funny, spiced, interesting, awesome, good,

...

and let’s say we have a vocabulary F of v such sentiment words

Then for an example
x = ‘This film is fun though shy on the action’ with sentiment
y = +, let us retain only the sentiment words:
I 〈‘fun’, ‘shy’, ‘though’, ‘action’〉 =

sentwords(‘This film is fun though shy on the action’)
I we will denote this by a random pair (Y, 〈F1, . . . , Fn〉)

Wilker Aziz NTMI 2019 - week 6a 3



Naive Bayes Classifiers

In a naive Bayes classifier, we assume the class y generates the
features 〈f1, . . . , fn〉
y

f

n

That is, we assume features to be
conditionally independent given a class

PY F n
1

(y, 〈f1, . . . , fn〉) =

PY (y)×
n∏

i=1
PF |Y (fi|y)
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Naive Bayes Binary Classification

y

f φ

n

K

Suppose a dataset of labelled examples
D =

{
y(k), 〈f (k)

1 , . . . , f
(k)
nk 〉

}K

k=1
and a

vocabulary of v features

The generative story for each training instance:

Y ∼ U(1/2)
for i = 1, . . . , n

Fi|y ∼ Cat(φ(y)
1 , . . . , φ(y)

v )
Thus, for one training instance

PY F n
1

(y, 〈f1, . . . , fn〉) = PY (y)×
n∏

i=1
PF |Y (fi|y)

= U(1/2)
n∏

i=1
Cat(fi|φ(y)) ∝

n∏
i=1

φ
(y)
fi
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Naive Bayes Binary Classification: MLE

The log-likelihood of the data is proportional to

logP (D|φ) =
K∏

k=1
PY |F n

1
(yk, 〈f

(k)
1 , . . . , f (k)

nk
〉|φ)

∝
K∑

k=1

n∑
i=1

logPF |Y (f (k)
i |y

(k), φ)

y

f φ

n

K

How many parameters?

2× v

MLE
φ

(y)
f = countY F (y, f)

countY (y)
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Naive Bayes Binary Classification: Predictions
For some new example with features 〈f1, . . . , fn〉, we can predict
its class easily by solving a maximisation problem

y? = argmax
y

PY |F n
1

(y|〈f1, . . . , fn〉)

= argmax
y

PY (y)PF n
1 |Y (〈f1, . . . , fn〉|y)

PF n
1

(〈f1, . . . , fn〉)
Bayes rule

= argmax
y

PY (y)PF n
1 |Y (〈f1, . . . , fn〉|y) Proportionality

= argmax
y

PF n
1 |Y (〈f1, . . . , fn〉|y) Proportionality

= argmax
y

n∏
i=1

PF |Y (fi|y) Conditional independence

= argmax
y

n∑
i=1

log φ(y)
fi

Monotonicity of logarithm
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Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)

I but isn’t conditional independence a bit too strong?
Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.
It’s riddled with generally negative words, but in the end the
overall opinion is positive
I we need richer features, such as

a bit slow, a little repetitive, not too bad
I but an increase in feature space, e.g. O(v3) for trigram

features, leads to problems for parameter estimation

Wilker Aziz NTMI 2019 - week 6a 8



Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)
I but isn’t conditional independence a bit too strong?

Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.
It’s riddled with generally negative words, but in the end the
overall opinion is positive
I we need richer features, such as

a bit slow, a little repetitive, not too bad
I but an increase in feature space, e.g. O(v3) for trigram

features, leads to problems for parameter estimation

Wilker Aziz NTMI 2019 - week 6a 8



Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)
I but isn’t conditional independence a bit too strong?

Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.

It’s riddled with generally negative words, but in the end the
overall opinion is positive
I we need richer features, such as

a bit slow, a little repetitive, not too bad
I but an increase in feature space, e.g. O(v3) for trigram

features, leads to problems for parameter estimation

Wilker Aziz NTMI 2019 - week 6a 8



Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)
I but isn’t conditional independence a bit too strong?

Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.
It’s riddled with generally negative words, but in the end the
overall opinion is positive

I we need richer features, such as
a bit slow, a little repetitive, not too bad

I but an increase in feature space, e.g. O(v3) for trigram
features, leads to problems for parameter estimation

Wilker Aziz NTMI 2019 - week 6a 8



Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)
I but isn’t conditional independence a bit too strong?

Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.
It’s riddled with generally negative words, but in the end the
overall opinion is positive
I we need richer features, such as

a bit slow, a little repetitive, not too bad

I but an increase in feature space, e.g. O(v3) for trigram
features, leads to problems for parameter estimation

Wilker Aziz NTMI 2019 - week 6a 8



Problem with Naive Bayes classification
Instead of computing PY |X(y|x)
I we compute PY |F n

1
(y|fn

1 ) using some features fn
1 of x

I instead of modelling PY |F n
1

directly, we modelled PF n
1 |Y using

tabular CPDs
I and got to PY |F n

1
(y|fn

1 ) via Bayes rule
PY |F n

1
(y|fn

1 ) ∝ PY (y)PF n
1 |Y (fn

1 |y)
I but isn’t conditional independence a bit too strong?

Consider the following example
I Some parts are a bit slow and a little repetitive, but overall

not too bad.
It’s riddled with generally negative words, but in the end the
overall opinion is positive
I we need richer features, such as

a bit slow, a little repetitive, not too bad
I but an increase in feature space, e.g. O(v3) for trigram

features, leads to problems for parameter estimation
Wilker Aziz NTMI 2019 - week 6a 8



Conditioning on high-dimensional data

The problem is that we only know tabular CPDs

If Y takes on values in Y and X takes on values in X , tabular
CPDs associate a parameter θ(x)

y with each outcome y in context x

PY |X(y|x) = Cat(y|θ(x)) = θ(x)
y

This can only work if |Y| and |X | are relatively small
I representation cost O(|Y| × |X |)

If x is itself very high-dimensional (e.g. a sentence), this cannot
possibly work (as in this case X ⊆ Σ∗)
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Are there other representations to CPDs?

Let’s focus on the case where x is high-dimensional and y is binary
How can we assign a value to PY |X(y|x)?
I can we avoid a table lookup?
I can we let outcomes share statistical evidence?

Let’s model the probability value!
I suppose a function f(x, y) makes a finite summary of the

aspects of the joint outcome (x, y) relevant to a problem
I we call f : X × Y → RD a feature function
I we can then make the probability value PY |X(y|x) depend

functionally on f(x, y)
I but we need to make sure that 0 ≤ PY |X(y|x) ≤ 1 and that∑

y PY |X(y|x) = 1
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Feature function
An example of a binary feature function

Y 1 0
X This film is fun and

full of action
This film is full of
boring action

action+ 1 0
action− 0 1
boring+ 0 0
boring− 0 1

full+ 1 0
full− 0 1
fun+ 1 0
fun− 0 0

Table: Feature function: f : X × Y → {0, 1}D

I binary feature functions map the input to a D-dimensional
vector of feature indicators
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Logistic regression
Suppose we have a D-dimensional real vector w ∈ RD

I Can we say PY |X(y|x) = w>f(x, y) =
∑D

d=1wdfd(x, y) ?
No! Because w>f(x, y) can be negative and
w>f(x, y = 1) + w>f(x, y = 0) may not sum to 1

I What if we make PY |X(y|x) = exp
(
w>f(x, y)

)
?

Now we managed to ensure positivity, but still
w>f(x, y = 1) + w>f(x, y = 0) may not sum to 1

I The functional dependency on f(x, y) needs to be such that
the result is a valid distribution, i.e. normalised across
outcomes of Y |X = x

PY |X(y|x) =
exp

(
w>f(x, y)

)
∑

y′∈Y
exp

(
w>f(x, y)

)
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Logistic regression - MLE

We model the conditional using logistic regression

PY |X(y|x) =
exp

(
w>f(x, y)

)
∑

y′∈Y
exp

(
w>f(x, y)

)

Then with a dataset D = {(x(k), y(k))}Nk=1 of i.i.d. observations,
what’s the maximum likelihood estimate for w ∈ RD?

Count and divide won’t do ;)
recall where “count and divide” comes from
I we looked for the solution to ∇wL(w|D) = 0
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exp

(
w>f(x, y)

)

Then with a dataset D = {(x(k), y(k))}Nk=1 of i.i.d. observations,
what’s the maximum likelihood estimate for w ∈ RD?

We look for w that is solution to ∇wL(w|D) = 0 where

L(w|D) =
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is the log-likelihood function
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Let’s start with a single training instance

The log-likelihood function gets a contribution
`(w|x, y) = logPY |X(y|x,w) from each training instance

Let’s expand ` slightly

logPY |X(y|x,w) = log
exp

(
w>f(x, y)

)
∑

y′∈Y exp(w>f(x, y′))

=

w>f(x, y)− log
∑

y′∈Y
exp

(
w>f(x, y′)

)
︸ ︷︷ ︸

Z(x|w)

We need ∇w logPY |X(y|x,w) but let’s first take the gradient of
the partition function Z(x|w)
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Gradient of partition function

Let Z(x|w) =
∑

y∈Y exp
(
w>f(x, y)

)
,

its gradient is

∇wZ(x|w) = ∇w

∑
y∈Y

exp
(
w>f(x, y)

)
=
∑
y∈Y

∇w exp
(
w>f(x, y)

)
=
∑
y∈Y

exp
(
w>f(x, y)

)
∇w(w>f(x, y))

=
∑
y∈Y

exp
(
w>f(x, y)

)
f(x, y)
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Gradient of the model
Now we know that ∇wZ(x|w) =

∑
y∈Y exp

(
w>f(x, y)

)
f(x, y)

And `(w|x, y) = w>f(x, y)− logZ(x|w), thus its gradient is

∇w`(w|x, y) = ∇w(w>f(x, y)− logZ(x|w))
= f(x, y)−∇w logZ(x|w)

Let’s check the second term

∇w logZ(x|w) = 1
Z(x|w)∇wZ(x|w)

= 1
Z(x|w)

∑
y∈Y

exp
(
w>f(x, y)

)
f(x, y)

=
∑
y∈Y

exp
(
w>f(x, y)

)
Z(x|w) f(x, y)

=
∑
y∈Y

PY |X(y|x,w)f(x, y) = E[f(x, Y )]
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∇w logZ(x|w) = 1
Z(x|w)∇wZ(x|w)

= 1
Z(x|w)

∑
y∈Y

exp
(
w>f(x, y)

)
f(x, y)

=
∑
y∈Y

exp
(
w>f(x, y)

)
Z(x|w) f(x, y)

=
∑
y∈Y

PY |X(y|x,w)f(x, y) = E[f(x, Y )]
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Putting everything together
We know
I ∇wZ(x|w) =

∑
y∈Y exp

(
w>f(x, y)

)
f(x, y)

I `(w|x, y) = w>f(x, y)− logZ(x|w)
I ∇w`(w|x, y) = f(x, y)−∇w logZ(x|w)
I and ∇w logZ(x|w) = E[f(x, Y )]

Then
∇w`(w|x, y) = f(x, y)− E[f(x, Y )]

There is no closed-form solution to ∇w`(w|x, y) = 0, but there is
an iterative algorithm that converges to the solution

w(t+1) = w(t) + γ∇w(t)`(w(t)|x, y)

γ > 0 is called the learning rate (a hyperparameter)

Gradient descent
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Maximum likelihood estimation for logistic regression

We look for w that is solution to ∇wL(w|D) = 0 where

L(w|D) =
N∑

k=1
logPY |X(y(k)|x(k), w)︸ ︷︷ ︸

`(w|x(k),y(k))

There is no closed-form solution ∇wL(w|D), but there is an
iterative algorithm that converges to the solution

w(t+1) = w(t) + γ
N∑

k=1
∇w(t)`(w(t)|x(k), y(k))︸ ︷︷ ︸

∇wL(w|D)
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Stochastic gradient ascent

We can use unbiased stochastic gradient estimates instead of the
full gradient

w(t+1) = w(t) + γ(t)M

N

M∑
s=1

∇w(t)`(w(t)|x(s), y(s))

where S ∼ U(1/N) selects training instances uniformly at random

The learning rate γ > 0 must follow a particular schedule, e.g.

γ(t) = γ(t)

1 + γ(0)αt

where the initial learning rate γ(0) > 0 and the rate of decay α > 0
are hyperparameters
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Regularisation

To avoid overfitting to training instances, we place a penalty on
awkwardly large weights, our objective becomes

argmax
w∈RD

L(w|D)− λ

2 ||w||
2

where λ is the weight of the L2 regulariser

Our gradient becomes

∇w

(
L(w|D)− λ||w||2

)
= ∇wL(w|D)− λ

2 ∇w

D∑
d=1

w2
d

= ∇wL(w|D)− λ
D∑

d=1
wd
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Summary

Logistic regression allows us to express statistical dependencies
between two variables through a finite set of features
I we can directly model a conditional probability using rich

features of a high-dimensional conditioning context
(this is called a logistic cpd)

I without the need for the strong independence assumptions
I we have to estimate D parameters

(the weights of a log-linear model)
I MLE does not have a closed-form solution, but gradient

ascent gives us an iterative algorithm
Next class we will see how this can be used for various tasks
e.g. sentiment classification, language identification,
POS tagging, language modelling
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