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Variables: Deterministic vs Random
Deterministic variable: v = 5

Random variable: X ∼ U(a, b)

I the random variable can take on any value in a certain set
I here this set is the discrete interval [a, b]
I we don’t know the value of the random variable

we know it’s distribution

Image from Wikipedia
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Probability of an outcome

We cannot talk about the exact value of the random variable
but we can reason about it’s possible values
I we quantify the degree of belief we have in each outcome

Uniform distribution: every outcome is equally likely
I if n is the size of the set of possible outcomes

the probability that X takes on any value (e.g. a) is 1
n

P (X = x) = 1
n for all x ∈ [a, b]

Image from Wikipedia
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Let’s name some things

A random variable is a function
I it maps from a sample space Ω to R
X : Ω→ R

Example: “which pet do kids love the most?”
I Sample space: Ω = {bird, cat, dog}

X(ω) =


1 if ω = bird
2 if ω = cat
3 if ω = dog

I if say X = x we mean the set of outcomes
{ω : X(ω) = x} which is called an event

I we call X the support of X
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Temperature example
Let’s take the outside temperature as a random variable
I we might not particularly care whether it’s −3 or −3.2
I but we probably care to ask

“How does it feel outside?”

Let’s define an RV
I Sample space

some segment of the real line
I perhaps from -40 to 50?
I cap on precision?

I X(t) =


1 t < 10
2 10 ≤ t ≤ 20
3 t > 20

Example from Basic Probability by Schulz and Schaffner (2016)
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Types of random variables
Random variables are different in nature
I categorical: toss a coin
I ordinal: number of items in a bag
I continuous: height, weight

They can have finite or infinite support
I toss a coin, throw a die: finitely many outcomes
I distances: infinitely many outcomes
I number of stars: infinitely many outcomes

They can be vector-valued
I a point in a 2D-plane: e.g. (x, y) coordinates
I a point in a d-dimensional space: e.g. database records

house: floor area, latitude, longitude, altitude, number of
rooms, age, number of past owners, market value
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Discrete probability distribution

The discrete probability distribution of a random variable X
I assigns a probability value to each value X may take on

I probability values are never less than 0
P (X = x) ≥ 0 for all x ∈ X

I and a probability distribution sums to 1∑
x∈X P (X = x) = 1

I thus we have
I 0 ≤ P (X = x) ≤ 1 for all x ∈ X
I P (X 6= x) = 1− P (X = x)

Notation
I distribution: PX , PX(X), P (X)
I value: PX(X = x), P (X = x), PX(x), P (x)
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Joint probability distribution
Oftentimes we care about multiple random variables

and how their outcomes co-occur

Ω Letter (L)
Grade G 0 1
[0, 6) 1 (1, 0) (1, 1)
[6, 8) 2 (2, 0) (2, 1)
[8, 10] 3 (3, 0) (3, 1)

PGL Letter (L)
Grade G 0 1
[0, 6) 1 0.16 0.04
[6, 8) 2 0.42 0.28
[8, 10] 3 0.01 0.09

Table: Joint sample space Ω and joint distribution PGL

Joint probability P (G = g, L = l)
I we refer to the event {ω : G(ω) = g, L(ω) = l}

Properties
I 0 ≤ P (G = g, L = l) ≤ 1 for all (g, l) ∈ G × L
I

∑
g∈G

∑
l∈L P (G = g, L = l) = 1
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Marginal probability

Recover the distribution of each RV

PGL Letter (L)
Grade G 0 1 PG
[0, 6) 1 0.16 0.04 0.2
[6, 8) 2 0.42 0.28 0.7
[8, 10] 3 0.01 0.09 0.1

PL 0.59 0.41

Table: Joint distribution PGL and marginals PG and PL

Sum over all values of one of the RVs
I P (G = g) =

∑
l∈L P (G = g, L = l)

I P (L = l) =
∑
g∈G P (G = g, L = l)
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PGL Letter (L)
Grade G 0 1 PG
[0, 6) 1 0.16 0.04 0.2
[6, 8) 2 0.42 0.28 0.7
[8, 10] 3 0.01 0.09 0.1

PL 0.59 0.41

Conditional probability
If we know the value of one of the RVs
we can rescale to get a distribution

P (Y = y|X = x) = P (X = x, Y = y)
P (X = x)

PL|G=g Letter (L)
Grade G 0 1 →
[0, 6) 1 0.8 0.2 1.0
[6, 8) 2 0.6 0.4 1.0
[8, 10] 3 0.1 0.9 1.0

PG|L=l Letter (L)
Grade G 0 1
[0, 6) 1 0.27 0.10
[6, 8) 2 0.71 0.68
[8, 10] 3 0.02 0.22

↓ 1.00 1.00

Table: Conditional distributions PL|G=g and PG|L=l
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Rules of probability

Chain rule
I Two RVs
PXY (X = x, Y = y) = PX(X = x)PY (Y = y|X = x)

I General (n > 2)
PXn

1
(x1, . . . , xn) = PX1(x1)

∏n
i=2 PXi|X<i(xi|x1, . . . , xi−1)

Bayes rule
I if we know PX and PY |X , we know the joint PXY
I then we can infer PY by marginalisation
I then we can infer PX|Y

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
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Independence

If X does not depend on Y
we say X is independent of Y or X ⊥ Y

it holds that PX|Y (x|y) = PX(x)

This implies that for X ⊥ Y

PXY (x, y) = PX(x)PY (y)

And in general if Xi ⊥ Xj for all i 6= j

PXn
1

(x1, . . . , xn) =
n∏
i=1

PXi(xi)
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Bernoulli

A Bernoulli variable is a binary random variable

X ∼ Bern(p)

I X = {0, 1}
I p is the Bernoulli parameter

0 < p < 1
I P (X = 1) = p

I P (X = 0) =

1− p
Quiz
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Categorical

A Categorical variable can model 1 of k categories

X ∼ Cat(θ1, . . . , θk)

I X = {1, . . . , k}
I the categorical parameter is a probability vector

I 0 < θx < 1 for x ∈ [1, k]
I

∑k
x=1 θx = 1

I P (X = x) = θx =
∏k
i=1 θ

[x=i]
i

Quiz

Iverson bracket
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Statistical estimation

We investigate problems
I we hypothesise interactions between variables
I we assume variables have a certain nature
I we choose probability distributions
I we try to estimate parameters for these distributions as to

reproduce “natural” observations

Wilker Aziz NTMI 2020 - week 1b 18



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)

Wilker Aziz NTMI 2020 - week 1b 19



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)

Wilker Aziz NTMI 2020 - week 1b 19



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)

Wilker Aziz NTMI 2020 - week 1b 19



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)

Wilker Aziz NTMI 2020 - week 1b 19



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)

Wilker Aziz NTMI 2020 - week 1b 19



Likelihood

Let’s imagine we are interested in a random phenomenon
I which we express with an rv X ∼ PX

Then suppose we observe n realisations of the rv
I observations x1, . . . , xn
Xi ∼ PX for i = 1, . . . , n

I assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

I we call them independent and identically distributed
observations

From independence we know that
PXn

1
(x1, . . . , xn) =

∏n
i=1 PXi(xi)

and with iid observations
∏n
i=1 PXi(xi) =

∏n
i=1 PX(xi)
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Parametric model

The problem is that we do not know PX

I but we can pick a family that makes sense
I PX := Bern(p) for coins
I PX := Cat(θ1, . . . , θk) for pet preferences

I for a fixed family, each choice of parameter gives us a new
distribution

I we write PX(X;α), or PX;α
to stress the dependency on a collection of parameters α

The maximum likelihood principle is about
I picking α to give maximum probability to observations
I where the probability of observations (or likelihood) is
PXn

1
(x1, . . . , xn;α) =

∏n
i=1 PX(xi;α)

due to the idd assumption
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Optimisation
We start with our likelihood function

PXn
1

(x1, . . . , xn;α) =
n∏
i=1

PX(xi;α)

and proceed to optimise the parameter α

α? = argmax
α

PXn
1

(x1, . . . , xn;α) α such that likelihood is maximised

= argmax
α

n∏
i=1

PX(xi;α) iid observations

= argmax
α

log
n∏
i=1

PX(xi;α) log is monotonic

= argmax
α

n∑
i=1

logPX(xi;α) numerically convenient

We assume argmax to return a point (not a set). Want to know more about argmax? Check this out
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MLE solutions

Bernoulli

I p = n1
n

where n1 =
n∑
i=1

xi

Categorical

I θx = count(x)
n

where count(x) =
n∑
i=1

δxix

for all x ∈ X = {1, . . . , k}

δ is the Kronecker delta
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MLE solutions

Bernoulli

I p = n1
n

where n1 =
n∑
i=1

xi

Categorical

I θx = count(x)
n

where count(x) =
n∑
i=1

δxix

for all x ∈ X = {1, . . . , k}

Quiz

δ is the Kronecker delta
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MLE: Bernoulli

Probability mass function
I Bern(X = a|p) = pa(1− p)1−a

0 < p < 1

Problem: optimisation of the log-likelihood function L(p)

p? = argmax
p∈(0,1)

n∑
i=1

log Bern(xi|p)︸ ︷︷ ︸
L(p)

Strategy
1. set first derivative of L(p) to 0
2. solve for p
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Bernoulli: MLE derivation
Derivative

dL(p)
dp

=
d
dp

[
n∑
i=1

xi log p+ (1− xi) log(1− p)

]

=
n∑
i=1

xi
d
dp

log p+ (1− xi)
d
dp

log(1− p)

=
n∑
i=1

xi

p
+

1− xi
1− p

(−1)

=
n∑
i=1

xi(1− p)− (1− xi)p
p(1− p)

=
(1− p)
p(1− p)

n∑
i=1

xi︸ ︷︷ ︸
n1

−
p

p(1− p)

n∑
i=1

1− xi︸ ︷︷ ︸
n0

=
(1− p)
p(1− p)

n1 −
p

p(1− p)
n0

Set to 0 and solve for p

0 =
(1− p)
p(1− p)

n1 −
p

p(1− p)
n0

= (1− p)n1 − pn0

= n1 − pn1− pn0

= n1 − p(n1 + n0)
n1 = p(n1 + n0)

p =
n1

n1 + n0

p =
n1

n

Note
I n1 =

∑n

i=1 xi

I n0 =
∑n

i=1(1− xi)
I n = n1 + n0



MLE: Categorical
Probability mass function
I Cat(X = a|θ1, . . . , θk) =

∏k
x=1 θx

δxa∑k
x=1 θx = 1 with θx ∈ R>0 for all x ∈ [1, k]

Problem: optimisation of the log-likelihood function L(θk1 )

p? = argmax
θk

1 ∈Rk
>0

n∑
i=1

log Cat(xi|θk1 )︸ ︷︷ ︸
L(θ1,...,θk)

s.t.
k∑
x=1

θx = 1

Strategy
1. introduce Lagrange multiplier λ for the constraint

∑k
x=1 θx = 1

2. set partial derivatives to 0

3. solve for λ and θk1

Check the complete derivation
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Next steps

Lab2
I probability theory
I MLE for Bernoulli and Categorical

Next lecture we will discuss sequence prediction
I we will model with Categorical distributions
I and obtain maximum likelihood estimates from text
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