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Variables: Deterministic vs Random
Deterministic variable;: v =15
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Variables: Deterministic vs Random
Deterministic variable: v =5

Random variable: X ~ U(a,b)
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» the random variable can take on any value in a certain set
» here this set is the discrete interval [a, b]
» we don't know the value of the random variable

we know it's distribution

Image from Wikipedia
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Probability of an outcome

We cannot talk about the exact value of the random variable
but we can reason about it's possible values

> we quantify the degree of belief we have in each outcome

f(x)

S

o a |
Image from Wikipedia
Wilker Aziz NTMI 2020 - week 1b




Probability of an outcome

We cannot talk about the exact value of the random variable
but we can reason about it's possible values

> we quantify the degree of belief we have in each

Uniform distribution: every outcome is equally likely

» if n is the size of the set of possible outcomes

the probability that X takes on any value (e.g. a) is £
P(X =z)=1forall z € [a,0]

f(x)

o a |
Image from Wikipedia
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Let's name some things

A random variable is a function

P it maps from a sample space 2 to R
X:O—-R

Example: “which pet do kids love the most?”

» Sample space: Q2 = {bird, cat, dog}

1 ifw= bird
X(w)=4¢2 ifw= cat
3 ifw= dog
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Let's name some things

A random variable is a function

P it maps from a sample space 2 to R
X:O—-R

Example: “which pet do kids love the most?”
» Sample space: Q2 = {bird, cat, dog}

1 ifw= bird
X(w)=4¢2 ifw= cat
3 ifw= dog

> if say X = x we mean the set of outcomes
{w : X (w) = z} which is called an event
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Let's name some things

A random variable is a function

P it maps from a sample space 2 to R
X:O—-R

Example: “which pet do kids love the most?”
» Sample space: Q2 = {bird, cat, dog}

1 ifw= bird
X(w)=4¢2 ifw= cat
3 ifw= dog

> if say X = x we mean the set of outcomes
{w : X (w) = z} which is called an event

» we call X the support of X
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Temperature example

Let's take the outside temperature as a random variable

P> we might not particularly care whether it's —3 or —3.2
P> but we probably care to ask
“How does it feel outside?”

— cold
—— mild
— warm

X(t)
N

-20 -10 0 10 20
t(Q)

30 40

TNk > Basic Probability by Schulz and Schaffner (2016)
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Temperature example

Let's take the outside temperature as a random variable
P> we might not particularly care whether it's —3 or —3.2

P> but we probably care to ask

Let's define an RV S
» Sample space — o
some segment of the real line
» perhaps from -40 to 507 g2
» cap on precision?
1 t<10
> X(t) = 2 10 S t S 20 1-;0 -10 0 10 20 30 40
t(Q)
3 t>20
Example from
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Types of random variables
Random variables are different in nature
P categorical: toss a coin
» ordinal: number of items in a bag
P continuous: height, weight
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Types of random variables
Random variables are different in nature
P categorical: toss a coin
» ordinal: number of items in a bag
P continuous: height, weight

They can have finite or infinite support
P toss a coin, throw a die: finitely many outcomes
» distances: infinitely many outcomes

» number of stars: infinitely many outcomes
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Types of random variables
Random variables are different in nature
P categorical: toss a coin
» ordinal: number of items in a bag
P continuous: height, weight

They can have finite or infinite support
P toss a coin, throw a die: finitely many outcomes
» distances: infinitely many outcomes

» number of stars: infinitely many outcomes

They can be vector-valued
» a point in a 2D-plane: e.g. (x,y) coordinates

P a point in a d-dimensional space: e.g. database records
house: floor area, latitude, longitude, altitude, number of
rooms, age, number of past owners, market value
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Probability distributions
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Discrete probability distribution

The discrete probability distribution of a random variable X

P assigns a probability value to each value X may take on
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Discrete probability distribution

The discrete probability distribution of a random variable X
P assigns a probability value to each value X may take on

P probability values are never less than 0
P(X=z)>0forallze X
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Discrete probability distribution

The discrete probability distribution of a random variable X
P assigns a probability value to each value X may take on

> probability values are
P(X=z)>0forallze X

» and a probability distribution
erXP(X:.%):l
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Discrete probability distribution

The discrete probability distribution of a random variable X
P assigns a probability value to each value X may take on

P probability values are
P(X=z)>0forallze X

» and a probability distribution
Yecx P(X =2) =1

» thus we have

> 0<PX=x)<lforallzeX
» PX#4z)=1-P(X =1x)
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Discrete probability distribution

The discrete probability distribution of a random variable X
P assigns a probability value to each value X may take on

> probability values are
P(X=z)>0forallze X

» and a probability distribution
ZxEXP(X:x):l
» thus we have

> 0<PX=x)<lforallzeX
» PX#4z)=1-P(X =1x)

Notation
> distribution: Py, Px(X), P(X)
» value: Px(X =), P(X =x), Px(z), P(x)
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Joint probability distribution

Oftentimes we care about multiple random variables
and how their outcomes co-occur

Q Letter (L) Par Letter (L)
Grade G 0 1 Grade G| O 1

[0,6) 1] (1,0) (1,1) [0,6) 1016 004
6,8) 2 |(20) (2,1) [68 2 |042 0028
8,10 3 |(3,0) (3,1) [8,10] 3 |0.01 0.09

Table: Joint sample space €2 and joint distribution Pr
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Joint probability distribution

Oftentimes we care about multiple random variables
and how their outcomes co-occur

Q Letter (L) Par Letter (L)
Grade G 0 1 Grade G| O 1

0,6) 1|(L0) (L1) [0,6) 1016 004
6,8) 2 |(20) (21) [6,8) 2 |042 028
8,10] 3| (3,0) (3.1)  [8,10] 3 |0.01 0.09

Table: Joint sample space €2 and joint distribution Pr

Joint probability P(G =g, L =1)
> we refer to the event {w: G(w) = g, L(w) =1}
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Joint probability distribution

Oftentimes we care about multiple random variables
and how their outcomes co-occur

Q Letter (L) Por, Letter (L)
Grade G 0 1 Grade G 0 1

[0,6) 1] (1,0) (1,1) [0,6) 1016 004
6,8) 2 |(20) (2,1) [68 2 |042 0028
8,10 3 |(3,0) (3,1) [8,10] 3 |0.01 0.09

Table: Joint sample space €2 and joint distribution Pr

Joint probability P(G = g,L =1)
> we refer to the event {w: G(w) = g, L(w) =1}
Properties
» 0<P(G=g,L=1)<1forall (g,1)eGxL
> >geg 2iec P(G =9, L=1)=1

Wilker Aziz NTMI 2020 - week 1b



Marginal probability

Recover the distribution of each RV

Pqr, Letter (L)
Grade G 0 1 Pq
[0,6) 1 | 0.16 0.04|0.2
2
3

[6,8) 042 028107
[8,10] 0.01 0.09 | 0.1

Table: Joint distribution Pr; and marginals Pg and
Sum over all values of one of the RVs

> P(G=g)=>c P(G=g,L=1)
> P(L=1)=Y,gP(G=g,L=1)
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Conditional probability

Par Letter (L)
If we know the value of one of the RVs Grade ¢ | 0 1 | F%
C [0,6) 1 [0.16 0.04]02
we can rescale to get a distribution [6.8) 2 |042 02807
[8,100 3 |0.01 0.09]0.1

P, | 059 041

P(X=zY =y)
PY=yX=2x)=
f)];‘(; g Letter (L) PG\L:I Letter (L)
Grade G| O 1 — Grade G| O 1

[0, 6) 1108 02 1.0 [0,6) 1]0.27 0.10

6, 8) 2106 04 10 6,8) 2 1071 0.68

8,10] 3101 09 10 [8,10] 3 ] 0.02 0.22

4 | 1.00 1.00

Table: Conditional distributions /., , and Pgjr—;
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Rules of probability

Chain rule

» Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
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Rules of probability

Chain rule

> Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
» General (n > 2)
Pxp(x1,...,2n) = Px, (21) [Tiee Px; x., (xilz1, . 2io1)
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Rules of probability

Chain rule

> Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
» General (n > 2)
PX{I (x1, e ,J,’n) = PX1 (:L’l) H?:2 PX¢|X<¢(xi|x1= . ,xi_l)

Bayes rule

> if we know Px and Py |y, we know the joint Pxy
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Rules of probability

Chain rule

> Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
» General (n > 2)
PX{L (.Tl, e ,:IJn) = PX1 (:L’l) H?:2 PX¢|X<¢(xi|x17 . ,xi_l)

Bayes rule
> if we know Px and Py |y, we know the joint Pxy

» then we can infer by marginalisation
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Rules of probability

Chain rule

> Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
» General (n > 2)
PX{L (.Tl, e ,:IJn) = PX1 (:L’l) H?:2 PX¢|X<¢(xi|x17 . ,xi_l)

Bayes rule
> if we know Px and Py |y, we know the joint Pxy
» then we can infer by marginalisation

> then we can infer Pyy
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Rules of probability

Chain rule

> Two RVs
Pxy(X=z,Y=y)=Px(X =2)Pv(Y =yl X =x)
» General (n > 2)
PX{L (xl, e ,J,’n) = PX1 (:L’l) H?:2 PX¢|X<¢(xi|x17 . ,xi_l)

Bayes rule
> if we know Px and Py |y, we know the joint Pxy
» then we can infer by marginalisation
> then we can infer Pyy

PX\Y($|y) _ PX(.TI)P}('y‘;(m:E)

Wilker Aziz NTMI 2020 - week 1b

12



Independence

If X does not depend on Y
we say X is independent of ¥ or X LY
it holds that Pxy (z|y) = Px(x)
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Independence

If X does not depend on Y

we say X is independent of ¥ or X 1 Y
it holds that Pxy (z|y) = Px(x)
This implies that for X 1L Y

Pxy(x,y) = Px(x)Py (y)
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Independence

If X does not depend on Y
we say X is independent of ¥ or X LY
it holds that Pxy (z|y) = Px(x)

This implies that for X 1L Y

Pxy(x,y) = Px(x)Py (y)

And in general if X; L X; forall ¢ # j

PX{L(SL'l, Ce. ,Z‘n) = HPXz(xl)
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Discrete distributions
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Bernoulli

A variable is a binary random variable
X ~ Bern(p)
» X ={0,1}
» p is the Bernoulli parameter
O<p<l1
> P(X=1)=p
> P(X=0)=

Wilker Aziz NTMI 2020 - week 1b
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Bernoulli

A variable is a binary random variable
X ~ Bern(p)
» X ={0,1}
» p is the Bernoulli parameter
0<pxl1

> P(X=1)=p
> P(X=0)=1-p
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Bernoulli

A variable is a binary random variable

X ~ Bern(p)
» X ={0,1}
> p is the Bernoulli parameter -
O<p<l1 06
» PX=1)=p
> P(X=0)=1-p o
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Categorical

A variable can model 1 of k categories

X ~ Cat(b,...,0)

> X ={1,...,k}

> the categorical parameter is a probability vector
> 0< 6, <1forzxell,k
> Zi:l 0, =1

> P(X = ) = 0, =TT, 0

> lverson bracket
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Categorical

A variable can model 1 of k& categories

X ~ Cat(b,...,0)

> X ={1,...,k}

P the categorical parameter is a probability vector
> 0< 6, <1forzxell,k
> Z]:; 10: =1

> P(X =2) =0, =[]~ 6"
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Categorical

A variable can model 1 of k categories

X ~ Cat(b,...,0)

> X ={1,...,k}
> the categorical parameter is a probability vector
> 0< 6, <1forzxell,k

[ ch:l ez -1 0.7
> P(X =1) =0, =", 0"

0.3

0.2

0.1

0.0

bird

> lverson bracket
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NLMI

Maximum likelihood estimation

Wilker Aziz NTMI 2020 - week 1b

17



Statistical estimation

We investigate problems
we hypothesise interactions between variables
we assume variables have a certain nature

we choose probability distributions

vvyYyy

we try to estimate parameters for these distributions as to
reproduce “natural” observations
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px
Then suppose we observe n realisations of the rv

» observations z1,...,xy,
X;~Pxfori=1,...,n
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px

Then suppose we observe n realisations of the rv
» observations z1,...,xy,
X;~Pxfori=1,...,n
P> assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px

Then suppose we observe n realisations of the rv

» observations z1,...,xy,
X;~Pxfori=1,...,n

P> assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px

Then suppose we observe n realisations of the rv

» observations z1,...,xy,
X;~Pxfori=1,...,n

P> assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

» we call them
observations

From we know that
PXI” (.’L‘l, e ,xn) - H?:l PXz (:1:7/)
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Likelihood

Let's imagine we are interested in a random phenomenon

» which we express with an rv X ~ Px

Then suppose we observe n realisations of the rv
» observations z1,...,xy,
X;~Pxfori=1,...,n
P> assume these observations are the result of independent trials
(i.e. independent repetitions) of the same random experiment

» we call them
observations

From we know that
PXI” (.’L‘l, e ,xn) - H?:l PXz (:1:7/)

and with /id observations [ ; Py, (z;) = [Ty Px(x;)
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Parametric model

The problem is that we do not know Px
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
» Px := Bern(p) for coins
> Py := Cat(fy,...,0;) for pet preferences
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
» Px := Bern(p) for coins
» Py := Cat(0y,...,0;) for pet preferences

» for a fixed family, each choice of parameter gives us a new
distribution
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
» Px := Bern(p) for coins
» Py := Cat(0y,...,0;) for pet preferences

» for a fixed family, each choice of parameter gives us a new
distribution

> we write Px(X;a), or Py,
to stress the dependency on a collection of parameters «
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
» Px := Bern(p) for coins
» Py := Cat(0y,...,0;) for pet preferences

» for a fixed family, each choice of parameter gives us a new
distribution

> we write Px(X;a), or Py,
to stress the dependency on a collection of parameters «

The maximum likelihood principle is about

P picking o to give maximum probability to observations
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Parametric model

The problem is that we do not know Px
» but we can pick a family that makes sense
» Px := Bern(p) for coins
» Py := Cat(0y,...,0;) for pet preferences
» for a fixed family, each choice of parameter gives us a new
distribution
> we write Px(X;a), or Py,
to stress the dependency on a collection of parameters «

The maximum likelihood principle is about
P picking o to give maximum probability to observations

» where the probability of observations (or ) is
Pxn(x1,...,z050) = [[i2 Px(wi; )
due to the assumption
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Optimisation
We start with our likelihood function

PXIL(arl,. .. ,xn;a) = HPX(ZEi;a)
i=1

and proceed to optimise the parameter «

a* = argmax Pxn(z1,...,2Zn;a) « such that likelihood is maximised
(0%

We assume argmax to return a point (not a set). Want to know more about argmax? Check
Wilker Aziz NTMI 2020 - week 1b 21
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Optimisation
We start with our likelihood function

n
PX{”(l’l, BN o) a) = H Px(xi; a)
i=1
and proceed to optimise the parameter «
o = argmax Pxn(x1,...,Ty;) « such that likelihood is maximised
«

n
= argmax H Px(x;; ) iid observations

« i=1

We assume argmax to return a point (not a set). Want to know more about argmax? Check
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Optimisation
We start with our likelihood function

n
Pxn(x1,...,2n;00) = H Px (x5
i=1
and proceed to optimise the parameter «

o = argmax Pxn(x1,...,Ty;) « such that likelihood is maximised
(0%

n
= argmax H Px(x;; ) iid observations
@ i=1
n
= argmax log H Px(x;; ) log is
« i=1

We assume argmax to return a point (not a set). Want to know more about argmax? Check
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Optimisation
We start with our likelihood function

Pxn(x1,...,2n;00) = HPX(ﬂfi?a)
=1

and proceed to optimise the parameter «

a* = argmax Pxn(z1,...,2Zn;a) « such that likelihood is maximised
(0%
n
= argmax H Px (45 «) iid observations
@ i=1
n
= argmax log H Px(x;; ) log is
« i=1
n
= argmax Zlog Px (x5 «) numerically convenient
« i=1

We assume argmax to return a point (not a set). Want to know more about argmax? Check
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MLE solutions

Bernoulli

n
ni
» p»p = — where nq :in
n =1

& is the Kronecker delta °
Wilker Aziz NTMI 2020 - week 1b
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MLE solutions

Bernoulli
ni n
» »p=— where ny = Z'Ti
n i=1
Categorical
count(x) -
>, = . where count(z) = 261‘7%
i=1

forallz e X ={1,...,k}

§ is the Kronecker delta
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MLE solutions

Bernoulli

n
n
» p=— where n1 = Z.:z',v
n =1

Categorical

count(x) -
> g, = W) () =56,
. - where count(x) ;
forallz e X ={1,...,k}

§ is the Kronecker delta
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MLE: Bernoulli

Probability mass function
> Bern(X = alp) = p*(1 —p)'~*
0<p<l1

Problem: optimisation of the log-likelihood function L£(p)

n
p* = argmax Z log Bern(z;|p)
pe(01) =1

L(p)

Strategy
1. set first derivative of L(p) to 0

2. solve for p
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Bernoulli: MLE derivation

Derivative

n

di(p) _ d

TR D wilogp+ (1 — ) log(1 - p)
=1

n

d d
= @i logp+ (1 — ;) log(1 - p)
—~ dp dp

:ixiufp)f(lw)p

p(1—p)

G- N, N,
_p(lfp)z ‘ p(l—m;l ‘

=1
N—— N—_——
ni no
1—
_0-»n -

p(1—p) p(1—p)

]
Set to 0 and solve for p

_ (1-p P

= ny —
p(1—p) p(1—p)

= (1 =p)n1 —pno

=mn1—ppl —png

=n1 — p(n1 + no)

n1 = p(n1 + no)
ny

no

ni + no

ni
p=—

n

Note

> ny= ZZL:I Zi

> ng= Z::l(l — i)

> n=mn1+ng



MLE: Categorical

Probability mass function
> Cat(X =alfy,...,00) = [1_, 0.%«

25:1 0, =1 with 6, € Ry for all z € [1, k]

Problem: optimisation of the log-likelihood function £(67)

n k
p* = argmax Zlog Cat(z;]07) s.t. Z 0,=1
r=1

k k
91 6]R>0 =1

L(01,....00)
Strategy
1. introduce Lagrange multiplier A for the constraint Zi:l 0, =1
2. set partial derivatives to 0

3. solve for A and 6F

Check the complete derivation

Wilker Aziz NTMI 2020 - week 1b
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Next steps

Lab2
P probability theory
» MLE for Bernoulli and Categorical

Next lecture we will discuss sequence prediction
» we will model with Categorical distributions

» and obtain maximum likelihood estimates from text
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