Natural Language Models and Interfaces BSc Artificial Intelligence

Lecturer: Wilker Aziz Institute for Logic, Language, and Computation

2020, week 1, lecture b

Random variables

Probability distributions

Discrete distributions

Maximum likelihood estimation

Variables: Deterministic vs Random

Deterministic variable: v = 5

Image from Wikipedia

Variables: Deterministic vs Random

Deterministic variable: v = 5

Random variable: $X \sim \mathcal{U}(a, b)$

the random variable can take on any value in a certain set

- here this set is the discrete interval [a, b]
- we don't know the value of the random variable we know it's distribution

Image from Wikipedia

Probability of an outcome

We cannot talk about **the exact value** of the random variable but we can reason about it's possible values

we quantify the degree of belief we have in each outcome

Image from Wikipedia

Probability of an outcome

We cannot talk about **the exact value** of the random variable but we can reason about it's possible values

we quantify the degree of belief we have in each outcome

Uniform distribution: every outcome is equally likely

Image from Wikipedia

Let's name some things

A random variable is a function

it maps from a sample space Ω to ℝ
 X : Ω → ℝ

Example: "which pet do kids love the most?"

• Sample space: $\Omega = \{ \text{bird}, \text{cat}, \text{dog} \}$ $X(\omega) = \begin{cases} 1 & \text{if } \omega = \text{ bird} \\ 2 & \text{if } \omega = \text{ cat} \\ 3 & \text{if } \omega = \text{ dog} \end{cases}$

Let's name some things

Let's name some things

Temperature example

Let's take the outside temperature as a random variable

- we might not particularly care whether it's -3 or -3.2
- but we probably care to ask "How does it feel outside?"

Example from (Basic Probability by Schulz and Schaffner (2016)

Temperature example

Let's take the outside temperature as a random variable

- we might not particularly care whether it's -3 or -3.2
- but we probably care to ask "How does it feel outside?"

Example from (Basic Probability by Schulz and Schaffner (2016)

Wilker Aziz

NTMI 2020 - week 1b

Types of random variables

Random variables are different in nature

- categorical: toss a coin
- ordinal: number of items in a bag
- continuous: height, weight

Types of random variables

Random variables are different in nature

- categorical: toss a coin
- ordinal: number of items in a bag
- continuous: height, weight

They can have finite or infinite support

- toss a coin, throw a die: finitely many outcomes
- distances: infinitely many outcomes
- number of stars: infinitely many outcomes

Types of random variables

Random variables are different in nature

- categorical: toss a coin
- ordinal: number of items in a bag
- continuous: height, weight

They can have finite or infinite support

- toss a coin, throw a die: finitely many outcomes
- distances: infinitely many outcomes
- number of stars: infinitely many outcomes

They can be vector-valued

- ▶ a point in a 2D-plane: e.g. (x, y) coordinates
- a point in a d-dimensional space: e.g. database records house: floor area, latitude, longitude, altitude, number of rooms, age, number of past owners, market value

Random variables

Probability distributions

Discrete distributions

Maximum likelihood estimation

The discrete probability distribution of a random variable \boldsymbol{X}

assigns a probability value to each value X may take on

The discrete probability distribution of a random variable X

- assigns a probability value to each value X may take on
- ▶ probability values are *never less than 0* $P(X = x) \ge 0$ for all $x \in \mathcal{X}$

The discrete probability distribution of a random variable X

- assigns a probability value to each value X may take on
- ▶ probability values are *never less than 0* $P(X = x) \ge 0$ for all $x \in \mathcal{X}$
- ▶ and a probability distribution sums to 1 $\sum_{x \in \mathcal{X}} P(X = x) = 1$

The discrete probability distribution of a random variable X

- assigns a probability value to each value X may take on
- ▶ probability values are *never less than 0* $P(X = x) \ge 0$ for all $x \in \mathcal{X}$
- and a probability distribution sums to 1 $\sum_{x \in \mathcal{X}} P(X = x) = 1$

thus we have

▶
$$0 \le P(X = x) \le 1$$
 for all $x \in \mathcal{X}$

$$\blacktriangleright P(X \neq x) = 1 - P(X = x)$$

The discrete probability distribution of a random variable X

- assigns a probability value to each value X may take on
- ▶ probability values are *never less than 0* P(X = x) ≥ 0 for all x ∈ X
- and a probability distribution sums to 1 $\sum_{x \in \mathcal{X}} P(X = x) = 1$

thus we have

▶
$$0 \le P(X = x) \le 1$$
 for all $x \in \mathcal{X}$
▶ $P(X \ne x) = 1 - P(X = x)$

Notation

• distribution:
$$P_X$$
, $P_X(X)$, $P(X)$

▶ value:
$$P_X(X = x)$$
, $P(X = x)$, $P_X(x)$, $P(x)$

Joint probability distribution

Oftentimes we care about multiple random variables and how their outcomes co-occur

Ω		Letter (L)		P_{GL}		Letter (L)	
Grade	G	0	1	Grade	G	0	1
[0, 6)	1	(1, 0)	(1, 1)	[0, 6)	1	0.16	0.04
[6, 8)	2	(2, 0)	(2, 1)	[6,8)	2	0.42	0.28
[8, 10]	3	(3,0)	(3,1)	[8, 10]	3	0.01	0.09

Table: Joint sample space Ω and joint distribution P_{GL}

Joint probability distribution

Oftentimes we care about multiple random variables and how their outcomes co-occur

Ω		Letter (L)		P_{GL}		Letter (L)	
Grade	G	0	1	Grade	G	0	1
[0, 6)	1	(1, 0)	(1,1)	[0, 6)	1	0.16	0.04
[6, 8)	2	(2, 0)	(2, 1)	[6,8)	2	0.42	0.28
[8, 10]	3	(3,0)	(3,1)	[8, 10]	3	0.01	0.09

Table: Joint sample space Ω and joint distribution P_{GL}

Joint probability P(G = g, L = l)

 \blacktriangleright we refer to the event $\{\omega: G(\omega)=g, L(\omega)=l\}$

Joint probability distribution

Oftentimes we care about multiple random variables and how their outcomes co-occur

Ω		Letter (L)		P_{GL}		Letter (L)	
Grade	G	0	1	Grade	G	0	1
[0, 6)	1	(1, 0)	(1,1)	[0, 6)	1	0.16	0.04
[6, 8)	2	(2, 0)	(2, 1)	[6,8)	2	0.42	0.28
[8, 10]	3	(3, 0)	(3,1)	[8, 10]	3	0.01	0.09

Table: Joint sample space Ω and joint distribution P_{GL}

Joint probability P(G = g, L = l)

• we refer to the event $\{\omega: G(\omega) = g, L(\omega) = l\}$ Properties

▶
$$0 \le P(G = g, L = l) \le 1$$
 for all $(g, l) \in \mathcal{G} \times \mathcal{L}$
▶ $\sum_{g \in \mathcal{G}} \sum_{l \in \mathcal{L}} P(G = g, L = l) = 1$

Marginal probability

Recover the distribution of each RV

P_{GL}		Lette	r(L)	
Grade	G	0	1	P_G
[0, 6)	1	0.16	0.04	0.2
[6,8)	2	0.42	0.28	0.7
[8, 10]	3	0.01	0.09	0.1
	P_L	0.59	0.41	

Table: Joint distribution P_{GL} and marginals P_G and P_L

Sum over all values of one of the RVs

$$\begin{array}{l} \blacktriangleright \ P(G=g) = \sum_{l \in \mathcal{L}} P(G=g,L=l) \\ \blacktriangleright \ P(L=l) = \sum_{g \in \mathcal{G}} P(G=g,L=l) \end{array}$$

Conditional probability

If we know the value of one of the RVs we can rescale to get a distribution

P_{GL}			Lette		
Gra	de	G	0	1	P_G
[0, 6]	i)	1	0.16	0.04	0.2
[6, 8]	3)	2	0.42	0.28	0.7
[8, 1]	.0]	3	0.01	0.09	0.1
		P_L	0.59	0.41	

$$P(Y = y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

Table: Conditional distributions $P_{L|G=g}$ and $P_{G|L=l}$

Chain rule

Two RVs
$$P_{XY}(X = x, Y = y) = P_X(X = x)P_Y(Y = y|X = x)$$

Chain rule

Chain rule

Bayes rule

• if we know P_X and $P_{Y|X}$, we know the joint P_{XY}

Chain rule

Two RVs
$$P_{XY}(X = x, Y = y) = P_X(X = x)P_Y(Y = y|X = x)$$
General (n > 2)
$$P_{X_1^n}(x_1, \dots, x_n) = P_{X_1}(x_1)\prod_{i=2}^n P_{X_i|X_{$$

Bayes rule

- if we know P_X and $P_{Y|X}$, we know the joint P_{XY}
- then we can infer P_Y by marginalisation

Chain rule

Two RVs
$$P_{XY}(X = x, Y = y) = P_X(X = x)P_Y(Y = y|X = x)$$
General (n > 2)
$$P_{X_1^n}(x_1, \dots, x_n) = P_{X_1}(x_1)\prod_{i=2}^n P_{X_i|X_{$$

Bayes rule

- if we know P_X and $P_{Y|X}$, we know the joint P_{XY}
- then we can infer P_Y by marginalisation
- then we can infer P_{X|Y}

Chain rule

Bayes rule

- if we know P_X and $P_{Y|X}$, we know the joint P_{XY}
- then we can infer P_Y by marginalisation
- then we can infer P_{X|Y}

$$P_{X|Y}(x|y) = rac{P_X(x)P_{Y|X}(y|x)}{P_Y(y)}$$

Independence

If X does not depend on Y we say X is independent of Y or $X \perp Y$ it holds that $P_{X|Y}(x|y) = P_X(x)$

Independence

If X does not depend on Y we say X is independent of Y or $X \perp Y$ it holds that $P_{X|Y}(x|y) = P_X(x)$

This implies that for $X \perp Y$

$$P_{XY}(x,y) = P_X(x)P_Y(y)$$

Independence

If X does not depend on Y we say X is independent of Y or $X \perp Y$ it holds that $P_{X|Y}(x|y) = P_X(x)$

This implies that for $X \perp Y$

$$P_{XY}(x,y) = P_X(x)P_Y(y)$$

And in general if $X_i \perp X_j$ for all $i \neq j$

$$P_{X_1^n}(x_1,\ldots,x_n) = \prod_{i=1}^n P_{X_i}(x_i)$$

Random variables

Probability distributions

Discrete distributions

Maximum likelihood estimation

Bernoulli

A Bernoulli variable is a binary random variable

 $X \sim \operatorname{Bern}(p)$

X = {0, 1}
 p is the Bernoulli parameter 0

$$\blacktriangleright P(X=1) = p$$

 $\blacktriangleright P(X=0) =$

A Bernoulli variable is a binary random variable

 $X \sim \operatorname{Bern}(p)$

$$\blacktriangleright P(X=0) = 1 - p$$

→ Quiz

Bernoulli

A Bernoulli variable is a binary random variable

 $X \sim \operatorname{Bern}(p)$

- *X* = {0,1}
 p is the Bernoulli parameter 0
- $\blacktriangleright P(X=1) = p$
- $\blacktriangleright P(X=0) = 1 p$

▶ Quiz

Categorical

A Categorical variable can model 1 of k categories

 $X \sim \operatorname{Cat}(\theta_1, \ldots, \theta_k)$

Iverson bracket

Categorical

A Categorical variable can model 1 of k categories

 $X \sim \operatorname{Cat}(\theta_1, \ldots, \theta_k)$

Iverson bracket

Categorical

A Categorical variable can model 1 of k categories

 $X \sim \operatorname{Cat}(\theta_1, \ldots, \theta_k)$

Random variables

Probability distributions

Discrete distributions

Maximum likelihood estimation

Statistical estimation

We investigate problems

- we hypothesise interactions between variables
- we assume variables have a certain nature
- we choose probability distributions
- we try to estimate parameters for these distributions as to reproduce "natural" observations

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Then suppose we observe \boldsymbol{n} realisations of the rv

• observations x_1, \ldots, x_n $X_i \sim P_X$ for $i = 1, \ldots, n$

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Then suppose we observe n realisations of the rv

• observations
$$x_1, \ldots, x_n$$

 $X_i \sim P_X$ for $i = 1, \ldots, n$

assume these observations are the result of independent trials (i.e. independent repetitions) of the same random experiment

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Then suppose we observe n realisations of the rv

• observations
$$x_1, \ldots, x_n$$

 $X_i \sim P_X$ for $i = 1, \ldots, n$

- assume these observations are the result of independent trials (i.e. independent repetitions) of the same random experiment
- we call them independent and identically distributed observations

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Then suppose we observe n realisations of the rv

• observations
$$x_1, \ldots, x_n$$

 $X_i \sim P_X$ for $i = 1, \ldots, n$

- assume these observations are the result of independent trials (i.e. independent repetitions) of the same random experiment
- we call them *independent and identically distributed* observations

From *independence* we know that $P_{X_1^n}(x_1, \ldots, x_n) = \prod_{i=1}^n P_{X_i}(x_i)$

Let's imagine we are interested in a random phenomenon

• which we express with an rv $X \sim P_X$

Then suppose we observe n realisations of the rv

• observations
$$x_1, \ldots, x_n$$

 $X_i \sim P_X$ for $i = 1, \ldots, n$

- assume these observations are the result of independent trials (i.e. independent repetitions) of the same random experiment
- we call them *independent and identically distributed* observations

From *independence* we know that $P_{X_1^n}(x_1, \ldots, x_n) = \prod_{i=1}^n P_{X_i}(x_i)$ and with *iid* observations $\prod_{i=1}^n P_{X_i}(x_i) = \prod_{i=1}^n P_X(x_i)$

The problem is that we do not know P_X

The problem is that we do not know P_X

but we can pick a family that makes sense

The problem is that we do not know P_X

but we can pick a family that makes sense

- $P_X := \text{Bern}(p)$ for coins
- $P_X := \operatorname{Cat}(\theta_1, \ldots, \theta_k)$ for pet preferences

The problem is that we do not know P_X

- but we can pick a family that makes sense
 - $P_X := \operatorname{Bern}(p)$ for coins
 - $P_X := \operatorname{Cat}(\theta_1, \ldots, \theta_k)$ for pet preferences
- for a fixed family, each choice of parameter gives us a new distribution

The problem is that we do not know P_X

- but we can pick a family that makes sense
 - $P_X := \operatorname{Bern}(p)$ for coins
 - $P_X := \operatorname{Cat}(\theta_1, \ldots, \theta_k)$ for pet preferences
- for a fixed family, each choice of parameter gives us a new distribution
- we write $P_X(X; \alpha)$, or $P_{X; \alpha}$
 - to stress the dependency on a collection of parameters lpha

The problem is that we do not know P_X

- but we can pick a family that makes sense
 - $P_X := \text{Bern}(p)$ for coins
 - $P_X := \operatorname{Cat}(\theta_1, \ldots, \theta_k)$ for pet preferences
- for a fixed family, each choice of parameter gives us a new distribution
- we write P_X(X; α), or P_{X;α}
 to stress the dependency on a collection of parameters α

The maximum likelihood principle is about

• picking α to give maximum probability to observations

The problem is that we do not know P_X

- but we can pick a family that makes sense
 - $P_X := \operatorname{Bern}(p)$ for coins
 - $P_X := \operatorname{Cat}(\theta_1, \ldots, \theta_k)$ for pet preferences
- for a fixed family, each choice of parameter gives us a new distribution
- we write P_X(X; α), or P_{X;α}
 to stress the dependency on a collection of parameters α

The maximum likelihood principle is about

- picking α to give maximum probability to observations
- where the probability of observations (or *likelihood*) is $P_{X_1^n}(x_1, \ldots, x_n; \alpha) = \prod_{i=1}^n P_X(x_i; \alpha)$ due to the *idd* assumption

We start with our likelihood function

$$P_{X_1^n}(x_1,\ldots,x_n;\boldsymbol{\alpha}) = \prod_{i=1}^n P_X(x_i;\boldsymbol{\alpha})$$

and proceed to optimise the parameter lpha

 $\alpha^{\star} = \operatorname*{argmax}_{\alpha} P_{X_{1}^{n}}(x_{1}, \ldots, x_{n}; \alpha) \quad \alpha \text{ such that likelihood is maximised}$

We start with our likelihood function

$$P_{X_1^n}(x_1,\ldots,x_n;\boldsymbol{\alpha}) = \prod_{i=1}^n P_X(x_i;\boldsymbol{\alpha})$$

and proceed to optimise the parameter lpha

 $\alpha^{\star} = \underset{\alpha}{\operatorname{argmax}} P_{X_{1}^{n}}(x_{1}, \dots, x_{n}; \alpha) \quad \alpha \text{ such that likelihood is maximised}$ $= \underset{\alpha}{\operatorname{argmax}} \prod_{i=1}^{n} P_{X}(x_{i}; \alpha) \qquad \qquad \text{iid observations}$

We start with our likelihood function

$$P_{X_1^n}(x_1,\ldots,x_n;\boldsymbol{\alpha}) = \prod_{i=1}^n P_X(x_i;\boldsymbol{\alpha})$$

and proceed to optimise the parameter lpha

$$\begin{aligned} \alpha^{\star} &= \operatorname*{argmax}_{\alpha} \quad P_{X_{1}^{n}}(x_{1}, \dots, x_{n}; \alpha) \quad \alpha \text{ such that likelihood is maximised} \\ &= \operatorname*{argmax}_{\alpha} \quad \prod_{i=1}^{n} P_{X}(x_{i}; \alpha) & \text{iid observations} \\ &= \operatorname*{argmax}_{\alpha} \quad \log \prod_{i=1}^{n} P_{X}(x_{i}; \alpha) & \log \text{ is monotonic} \end{aligned}$$

We start with our likelihood function

$$P_{X_1^n}(x_1,\ldots,x_n;\boldsymbol{\alpha}) = \prod_{i=1}^n P_X(x_i;\boldsymbol{\alpha})$$

and proceed to optimise the parameter lpha

$$\begin{aligned} \alpha^{\star} &= \operatorname*{argmax}_{\alpha} \quad P_{X_{1}^{n}}(x_{1}, \dots, x_{n}; \alpha) \quad \alpha \text{ such that likelihood is maximised} \\ &= \operatorname*{argmax}_{\alpha} \quad \prod_{i=1}^{n} P_{X}(x_{i}; \alpha) & \text{iid observations} \\ &= \operatorname*{argmax}_{\alpha} \quad \log \prod_{i=1}^{n} P_{X}(x_{i}; \alpha) & \log \text{ is monotonic} \\ &= \operatorname*{argmax}_{\alpha} \quad \sum_{i=1}^{n} \log P_{X}(x_{i}; \alpha) & \text{numerically convenient} \end{aligned}$$

MLE solutions

Bernoulli • $p = \frac{n_1}{n}$ where $n_1 = \sum_{i=1}^n x_i$

MLE solutions

Bernoulli

•
$$p = \frac{n_1}{n}$$
 where $n_1 = \sum_{i=1}^n x_i$

Categorical

•
$$\theta_x = \frac{\operatorname{count}(x)}{n}$$
 where $\operatorname{count}(x) = \sum_{i=1}^n \delta_{x_i x}$
for all $x \in \mathcal{X} = \{1, \dots, k\}$

MLE solutions

Bernoulli

•
$$p = \frac{n_1}{n}$$
 where $n_1 = \sum_{i=1}^n x_i$

Categorical

$$\bullet \quad \theta_x = \frac{\operatorname{count}(x)}{n} \text{ where } \operatorname{count}(x) = \sum_{i=1}^n \delta_{x_i x}$$
for all $x \in \mathcal{X} = \{1, \dots, k\}$

MLE: Bernoulli

Probability mass function

• Bern
$$(X = a|p) = p^a(1-p)^{1-a}$$

 0

Problem: optimisation of the log-likelihood function $\mathcal{L}(p)$

$$p^{\star} = \operatorname*{argmax}_{p \in (0,1)} \quad \underbrace{\sum_{i=1}^{n} \log \operatorname{Bern}(x_i|p)}_{\mathcal{L}(p)}$$

Strategy

1. set first derivative of $\mathcal{L}(p)$ to 0

2. solve for p

Bernoulli: MLE derivation

Derivative

$$\begin{aligned} \frac{\mathrm{d}\mathcal{L}(p)}{\mathrm{d}p} &= \frac{\mathrm{d}}{\mathrm{d}p} \left[\sum_{i=1}^{n} x_i \log p + (1-x_i) \log(1-p) \right] \\ &= \sum_{i=1}^{n} x_i \frac{\mathrm{d}}{\mathrm{d}p} \log p + (1-x_i) \frac{\mathrm{d}}{\mathrm{d}p} \log(1-p) \\ &= \sum_{i=1}^{n} \frac{x_i}{p} + \frac{1-x_i}{1-p} (-1) \\ &= \sum_{i=1}^{n} \frac{x_i(1-p) - (1-x_i)p}{p(1-p)} \\ &= \frac{(1-p)}{p(1-p)} \sum_{\substack{i=1\\n_1}}^{n} x_i - \frac{p}{p(1-p)} \sum_{\substack{i=1\\n_0}}^{n} 1 - x_i \\ &= \frac{(1-p)}{p(1-p)} n_1 - \frac{p}{p(1-p)} n_0 \end{aligned}$$

Set to 0 and solve for p

$$0 = \frac{(1-p)}{p(1-p)}n_1 - \frac{p}{p(1-p)}n_0$$

= $(1-p)n_1 - pn_0$
= $n_1 - p_n 1 - pn_0$
= $n_1 - p(n_1 + n_0)$
 $n_1 = p(n_1 + n_0)$
 $p = \frac{n_1}{n_1 + n_0}$
 $p = \frac{n_1}{n}$

Note

▶
$$n_1 = \sum_{i=1}^{n} x_i$$

▶ $n_0 = \sum_{i=1}^{n} (1 - x_i)$
▶ $n = n_1 + n_0$

MLE: Categorical

Probability mass function

•
$$\operatorname{Cat}(X = a | \theta_1, \dots, \theta_k) = \prod_{x=1}^k \theta_x^{\delta_{xa}}$$

 $\sum_{x=1}^k \theta_x = 1$ with $\theta_x \in \mathbb{R}_{>0}$ for all $x \in [1, k]$

Problem: optimisation of the log-likelihood function $\mathcal{L}(\theta_1^k)$

$$p^{\star} = \underset{\boldsymbol{\theta}_{1}^{k} \in \mathbb{R}_{>0}^{k}}{\operatorname{argmax}} \underbrace{\sum_{i=1}^{n} \log \operatorname{Cat}(x_{i} | \boldsymbol{\theta}_{1}^{k})}_{\mathcal{L}(\boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{k})} \quad \text{s.t.} \quad \sum_{x=1}^{k} \boldsymbol{\theta}_{x} = 1$$

Strategy

- 1. introduce Lagrange multiplier λ for the constraint $\sum_{x=1}^{k} \theta_x = 1$
- 2. set partial derivatives to 0
- 3. solve for λ and θ_1^k

Check the complete derivation Wilker Aziz NTMI 2020 - week 1b

Next steps

Lab2

- probability theory
- MLE for Bernoulli and Categorical

Next lecture we will discuss sequence prediction

- we will model with Categorical distributions
- and obtain maximum likelihood estimates from text

References I