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Quick intro to PGMs

Check the lecture notes on PGMs
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https://github.com/wilkeraziz/notes/blob/master/machine-learning/PGM/main.pdf


Tabular representation
Suppose A, B, and C are binary rvs

1. How do we represent PA,B,C (without making assumptions)?

Joint assignments Probability values
A B C PA,B,C

0 0 0 PA,B,C(0, 0, 0)
0 0 1 PA,B,C(0, 0, 1)
0 1 0 PA,B,C(0, 1, 0)
1 0 0 PA,B,C(1, 0, 0)
0 1 1 PA,B,C(0, 1, 1)
1 1 0 PA,B,C(1, 1, 0)
1 0 1 PA,C,C(1, 0, 1)
1 1 1 PB,B,C(1, 1, 1)

Table: Tabular joint distribution over 3 binary rvs

2. How many probability values does it take in general for n
variables with t outcomes each? nt
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Directed graphical models or Bayesian networks

A directed acyclic graph (DAG)
I nodes represent rvs
I edges represent direct influence
I a set of conditional independence statements

I an rv is conditionally independent of its non-descendants
given its parents
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Conditional independence in BNs
Consider A, B, and C, due to chain rule we can write

PA,B,C(a, b, c) = PA(a)PB|A(b|a)PC|AB(c|a, b) (1)

But if we are given a particular set of assumptions

ba c

Figure: Examples of BN

then we can simplify it

PA,B,C(a, b, c) = PA(a)PB|A(b|a)PC|AB(c|a, b) (2)
= PA(a)PB|A(b|a)PC|B(c|b) (3)

C is independent of non-descendants {A} given its parents {B}
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Chain rule for Bayesian networks

Chain rule (in general)

PX1,...,Xn(x1, . . . , xn) =
n∏

i=1
PX|X<i

(xi|x<i) (4)

Chain rule for Bayesian networks

PX1,...,Xn(x1, . . . , xn) =
n∏

i=1
PX|PaX

(x|pax) (5)

where
I PaX set of rvs parents of X

I paX assignments of parents of X
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Representing BNs
Each variable (given its parents) gets a tabular CPD
Thus for

ba c

Figure: Examples of BN

A PA

0 PA(0)
1 PA(1)

A B PB|A

0 0 PB|A(0|0)
0 1 PB|A(1|0)
1 0 PB|A(0|1)
1 1 PB|A(0|1)

B C PC|B

0 0 PC|B(0|0)
0 1 PC|B(1|0)
1 0 PC|B(0|1)
1 1 PC|B(0|1)

Representation cost
I from O(

∏n
i=1 | supp(Xi)|)

I to O(
∑n

i=1 | supp(Xi)| × | supp(PaXi)|)
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Exercises

c

a b

c

a b

a

b

c
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Figure: Write down the factorisation

Quiz
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https://goo.gl/forms/RMkjpcWVUx0NNYxi2


Inferences

So the BN shows us what are the CPDs in the problem
I but what if we want to reason about something that’s not a

CPD?

ba c

Figure: Examples of BN

Here we have CPDs PA, PB|A, and PC|B
I how do we reason about PB|C or PA|B?
I or PB or PC?
I or PBC|A?

For whatever combination, we have rules of probability!
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Conditional probability and marginalisation
If we have CPDs PA, PB|A, and PC|B, infer PB|C

I start from the definition of conditional probability

PB|C(b|c) =
PBC(b, c)

PC(c)

I marginalise A in the numerator

PB|C(b|c) =

∑
a

PABC(a, b, c)
PC(c)

I factorise the joint distribution to introduce the CPDs

PB|C(b|c) =

∑
a

PA(a)PB|A(b|a)PC|B(c|b)
PC(c)

I rearrange the terms for convenience

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)
PC(c)

I note that the last sum is the (inferred) marginal PB(b)
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Continuation
I we are here

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)
PC(c)

I now obtain the marginal in the denominator as a function of tabular CPDs

PC(c) =
∑

a

∑
b

PABC(a, b, c)

=
∑

a

∑
b

PA(a)PB|A(b|a)PC|B(c|b)

=
∑

a

PA(a)
∑

b

PB|A(b|a)PC|B(c|b)

I get back to the conditional

PB|C(b|c) =
PC|B(c|b)

∑
a

PA(a)PB|A(b|a)∑
a

PA(a)
∑

b
PB|A(b|a)PC|B(c|b)
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https://goo.gl/forms/4pcwvA3zg3yWrUK13
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