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Modelling language so far

Bag-of-word models (or unigram LMs)
I ignore word order entirely

n-gram models
I capture a shortened fixed-length history

HMM models
I capture a shortened fixed-length history
I by abstracting away from word form

through word classes
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Long-distance dependencies

The form of one word often depends on (agrees with) another
even when arbitrarily long material intervenes
I Sam sleeps soundly
I Dogs sleep soundly

I Sam, who is my cousin, sleeps soundly
I Dogs often play around my house and then sleep soundly
I Sam, the man with red hair who is my cousin, sleeps soundly

We want models that can capture these dependencies
I and are less sensitive to distance in linear order

Adapted from T. Deoskar
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What if we organise words and phrases in a tree?

CoreNLP
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Phrases
Words are organised into groups (phrases) which function as a unit
I POS categories indicate which words are substitutable.

e.g., substituting adjectives
I I saw a red cat
I I saw a former cat
I I saw a sleepy cat

I Phrasal categories indicate which phrases are substitutable
e.g., substituting noun phrase
I Dogs sleep soundly
I My next-door neighbours sleep soundly
I Green ideas sleep soundly

Phrasal categories: noun phrase (NP), verb phrase (VP),
prepositional phrase (PP), etc.

Adapted from T. Deoskar
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Heads and Phrases

The class that a word belongs to is closely linked to the name of
the phrase it customarily appears in.
I In a X-phrase (e.g. NP), the key occurrence of X (e.g. N) is

called the head.

English NPs are commonly of the form
I (Det) Adj* Noun (PP — RelClause)*

NP: the angry duck that tried to bite me ; head: duck

VPs are commonly of the form
I (Aux) Adv* Verb Arg* Adjunct*

VP: usually eats pasta for dinner ; head : eat

Adapted from T. Deoskar
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Heads and Phrases

English NPs are commonly of the form
I (Det) Adj* Noun (PP — RelClause)*

NP

(PP—RelativeClause)*

that tried to bite me

Noun

duck

Adj*

angry

(Det)

the

VPs are commonly of the form
I (Aux) Adv* Verb Arg* Adjunct*

VP

Adjunct*

for dinner

Arg*

pasta

Verb

eats

Adv*

usually

(Aux)

the
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Theories of Syntax

A theory of syntax should explain which sentences are well-formed
(grammatical) and which are not
I well-formed is distinct from meaningful.
I Example from Chomsky

Colorless green ideas sleep furiously

I However, the reason we care about syntax is mainly for
interpreting meaning

Adapted from T. Deoskar
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Desirable properties of a grammar
Chomsky specified two properties that make a grammar
“interesting and satisfying”
I It should be a finite specification of the strings of the

language, rather than a list of its sentences.
I It should be revealing, in allowing strings to be associated

with meaning (semantics) in a systematic way.

We can add another desirable property
I It should capture structural and distributional properties of

the language
e.g. where heads of phrases are located
e.g. how a sentence transforms into a question
e.g. which phrases can move around the sentence

Adapted from T. Deoskar
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Desirable properties of a grammar

I Context-free grammars (CFGs) provide a pretty good
approximation

I Some features of NLs are more easily captured using mildly
context-sensitive grammars
I Combinatory Categorial Grammar (CCG)
I Lexicalised Tree Adjoining Grammar (LTAG)

Adapted from T. Deoskar
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A small fragment of English

Let’s say we want to capture in a grammar the structural and
distributional properties that give rise to sentences like this:

A Tiny Fragment of English

Let’s say we want to capture in a grammar the structural and
distributional properties that give rise to sentences like:

A duck walked in the park. NP,V,PP
The man walked with a duck. NP,V,PP
You made a duck. Pro,V,NP
You made her duck. ? Pro,V,NP
A man with a telescope saw you. NP,PP,V,Pro
A man saw you with a telescope. NP,V,Pro,PP
You saw a man with a telescope. Pro,V,NP,PP

We want to write grammatical rules that generate these phrase
structures, and lexical rules that generate the words appearing in
them.

8 / 58

I write lexical rules that generate the words appearing in them
I write grammatical rules that generate these phrase structures

Adapted from T. Deoskar
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Grammar for the small fragment of English

Grammar G1 generates the sentences on the previous slide:

Grammar for the Tiny Fragment of English

Grammar G1 generates the sentences on the previous slide:

Grammatical rules Lexical rules
S ! NP VP Det ! a | the | her (determiners)
NP ! Det N N ! man | park | duck | telescope (nouns)
NP ! Det N PP Pro ! you (pronoun)
NP ! Pro V ! saw | walked | made (verbs)
VP ! V NP PP Prep ! in | with | for (prepositions)
VP ! V NP
VP ! V
PP ! Prep NP

Does G1 produce a finite or an infinite number of sentences?

9 / 58

Does G1 produce a finite or an infinite number of sentences?

Adapted from T. Deoskar
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Recursion

Recursion in a grammar makes it possible to generate an infinite
number of sentences
I Direct recursion: a non-terminal on the LHS of a rule also

appears on its RHS
VP → VP Conj VP
Conj → and — or

I Indirect recursion: some non-terminal can be expanded (in
several steps) to a sequence of symbols containing that
non-terminal
NP → Det N PP
PP → Prep NP
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NLMI

Trees and grammars

Context-free grammars

Probabilistic context-free grammars
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Context-Free Grammar

A rewriting system with two types of symbols
I Terminals (or constants): words
I Nonterminals (or variables): phrasal categories

e.g. S, NP, VP
with S being the start symbol

Rules of the form X→ β
where β is any string of nonterminals and terminals

indicate that X can be replaced by β anywhere where X occurs
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CFG example

Theories of syntax

A theory of syntax should explain which sentences are well-formed
(grammatical) and which are not.

• Note that well-formed is distinct from meaningful.

• Famous example from Chomsky:

Colorless green ideas sleep furiously

• However we’ll see shortly that the reason we care about syntax is

mainly for interpreting meaning.

Sharon Goldwater FNLP Lecture 11 4

Theories of syntax

We’ll look at two theories of syntax to handle one or both phenomena

above (long-range dependencies, phrasal substitutability):

• Context-free grammar (and variants): today, next class

• Dependency grammar: following class

These can be viewed as di↵erent models of language behaviour. As

with other models, we will look at

• What each model can capture, and what it cannot.

• Algorithms that provide syntactic analyses for sentences using

these models (i.e., syntactic parsers).

Sharon Goldwater FNLP Lecture 11 5

Reminder: Context-free grammar

• Two types of grammar symbols:

– terminals (t): words.

– Non-terminals (NT): phrasal categories like S, NP, VP, PP,

with S being the Start symbol. In practice, we sometimes

distinguish pre-terminals (POS tags), a type of NT.

• Rules of the form NT ! b, where b is any string of NT’s and t’s.

Abbreviate sets of rules with same LHS: NT ! b1 | b2 | b3 | . . .

• A CFG in Chomsky Normal Form only has rules of the form

NTi ! NT j NTk or NTi ! t j

Sharon Goldwater FNLP Lecture 11 6

CFG example

S ! NP VP (Sentences)
NP ! D N | Pro | PropN (Noun phrases)
D ! PosPro | Art | NP ’s (Determiners)
VP ! Vi | Vt NP | Vp NP VP (Verb phrases)
Pro ! i | we | you | he | she | him | her (Pronouns)
PosPro ! my | our | your | his | her (Possessive pronouns)
PropN ! Robin | Jo (Proper nouns)
Art ! a | an | the (Articles)
N ! man | duck | saw | park | telescope (Nouns)
Vi ! sleep | run | duck (Intransitive verbs)
Vt ! eat | break | see | saw (Transitive verbs)
Vp ! see | saw | heard (Verbs with NP VP args)

Sharon Goldwater FNLP Lecture 11 7
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CFGs formally

Let Σ be a finite set of terminal symbols (aka words)
e.g. generically we write x ∈ Σ

Let V be a finite set of nonterminal symbols (aka variables)
where Σ ∪ V = ∅ and S ∈ V is a distinguished start symbol

Let β ∈ (Σ ∪ V)∗ be a (possibly empty) string of terminal and
nonterminal symbols

and let ε denote the empty string

Let R ⊆ V × (Σ ∪ V)∗ be a finite set of rules of the form
X→ β where X ∈ V and β ∈ (Σ ∪ V)∗

A CFG is the tuple G = 〈Σ,V,S,R〉
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CFG terminology

The number of symbols on the RHS is the arity of the rule
I unary: X→ Y
I binary: X→ Y Z
I n-ary: X→ X1 · · ·Xn
I if the longest rule has arity a we say the grammar has arity a

Pre-terminal rules
I unary rules such as X→ x

where x ∈ Σ is a terminal

How many?
I pre-terminal rules? O(|V| × |Σ|)
I phrase rules? O(|V| × |Σ ∪ V|a)
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Derivation
We can use CFGs to derive strings

A derivation is a sequence of strings
I we start from the string 〈S〉
I and at each step we rewrite the leftmost nonterminal X by

application of a rule X→ β

I until only terminals remain
which we denote S ∗⇒ x1 · · · xn

Example

1. 〈S〉
2. 〈NP VP〉
3. 〈D N VP〉
4. 〈the N VP〉

5. 〈the dog VP〉

6. 〈the dog V〉

7. 〈the dog barks〉
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Derivation - examples

Example

1. 〈S〉

2. 〈NP VP〉
3. 〈D N VP〉
4. 〈the N VP〉

5. 〈the dog VP〉

6. 〈the dog V〉

7. 〈the dog runs〉

Example

1. 〈S〉
2. 〈NP VP〉
3. 〈N VP〉

4. 〈cats VP〉
5. 〈cats V〉
6. 〈cats run〉
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Derivation - more examples

1. 〈S〉

2. 〈NP VP〉
3. 〈NP CC NP VP〉
4. 〈N CC NP VP〉
5. 〈cats CC NP VP〉

6. 〈cats and NP VP〉
7. 〈cats and N VP〉
8. 〈cats and dogs VP〉
9. 〈cats and dogs V〉

10. 〈cats and dogs run〉
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Parse trees

Parse trees compactly represent derivations

S

VP

V

runs

NP

N

dog

D

the

S

VP

V

run

NP

N

cats

S

VP

V

run

NP

NP

N

dogs

CC

and

NP

N

cats
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Derivation: a sequence of rule applications

A derivation can be seen as a sequence of rule applications
〈r1, . . . , rm〉
I starts from S
I and after m steps yields a string yield(rm1 ) = xn1
I the sequence can be read off of a tree by a depth-first traversal
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Derivations as trees

S

VP

NP

N

cats
10

2
VP

V

chase
6

4

5
NP

N

dogs
12

2

1

Sequence of rule applications (depth-first traversal)
〈r1 = 1, r2 = 2, r3 = 12, r4 = 5, r5 = 4, r6 = 6, r7 = 2, r8 = 10〉

The sentence is the yield of the derivation
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Structural ambiguity

Different structure leads to different interpretation

S

VP

NP

PP

N

anchovies

P

with

N

pizza

V

eat

NP

Det

I

S

VP

PP

PP

N

anchovies

PRP

with

VP

NP

N

pizza

V

eat

NP

Det

I

How should we deal with this? Probabilities!
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NLMI

Trees and grammars

Context-free grammars

Probabilistic context-free grammars
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Probability distributions over derivations

We define a random derivation D
I a sequence 〈R1, . . . , Rm〉 of random rule applications
I where R is a random variable indexing rules of the grammar

The probability over a sequence of m rules can be written

PD|M (rm1 |m) =
m∏
i=1

PRi|R<i
(ri|r<i)︸ ︷︷ ︸

chain rule

≈
m∏
i=1

PR(ri)︸ ︷︷ ︸
independence assumption
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Conditional independence
A rule rewrites a LHS nonterminal symbol into a RHS string
I A rule R : v → β corresponds to a random pair (LHS,RHS)
I LHS corresponds to a random nonterminal symbol v ∈ V
I RHS corresponds to a random sequence of terminals and

nonterminals β ∈ (Σ ∪ V)a

Then we re-write the probability of a derivation as

PD|M (rm1 |m) = PD(〈(v1, β1)︸ ︷︷ ︸
r1

, . . . , (vm, βm)︸ ︷︷ ︸
rm

〉|m)

=
m∏
i=1

PR(ri) =
m∏
i=1

PR(vi → βi)

=
m∏
i=1

PRHS|LHS(βi|vi)
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Factorisation

We make RHS|LHS = v ∼ Cat(θ(v))
I 0 < θv→β < 1
I

∑
β θv→β = 1

What’s the support of PRHS|LHS=v?
I The set of all RHS strings (Σ ∪ V)a

Notation guideline
I PR(v → β) = PRHS|LHS(β|v) = θv→β or PR(r) = θr

e.g. PR(S→ NP VP) = PRHS|LHS(NP VP|S) = θS→NP VP

How many parameters to represent PR?
I One cpd per LHS, thus O(|V| × |Σ ∪ V|a)
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Probability of a derivation

A simple product over m terms

PD|M (rm1 |m) =
m∏
i=1

PR(vi → βi)

=
m∏
i=1

PRHS|LHS(βi|vi)

=
m∏
i=1

Cat(βi|θ(vi))

=
m∏
i=1

θvi→βi

where ri corresponds to vi → βi
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Probabilistic CFG Language Model
Generative story

1. Generate a sentence length N ∼ PN
2. Generate a derivation length M |n ∼ PM |N
3. Generate a derivation D|m ∼ PD|M
4. Generate a sentence S|rm1 , n,m ∼ PS|DNM

PSD(xn1 , rm1 ) = PN (n)PM |N (m|n)PD|M (rm1 )PS|DNM (xn1 |rm1 )︸ ︷︷ ︸
PSD|NM (xn

1 ,r
m
1 |n,m)

But note that (4) is deterministic

PS|DNM (xn1 |rm1 ) =
{

1 if yield(rm1 ) = xn1
0 otherwise
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Probability of a sentence

Joint distribution

PSD(xn1 , rm1 ) = PN (n)PM |N (m|n)PD|M (rm1 )PS|DNM (xn1 |rm1 )

Marginal

PS(xn1 )

=
∑
rm

1

PN (n)PM |N (m|n)PD|M (rm1 )PS|DNM (xn1 |rm1 )

=
∑
rm

1

PN (n)PM |N (m|n)PD|M (rm1 )× [yield(rm1 ) = xn1 ]

= PN (n)
∑

rm
1 ∈G(xn

1 )
PM |N (m|n)PD|M (rm1 )

where G(xn1 ) is the set of derivations whose yield is xn1
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Probability of a sentence

Typically PN and PM |N are ignored (assumed uniform), then

PS(xn1 ) ∝
∑

rm
1 ∈G(xn

1 )
PD|M (rm1 )

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

PR(ri)

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

PR(vi → βi)

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

θvi→βi

where ri corresponds to vi → βi
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Probability of a sentence

Typically PN and PM |N are ignored (assumed uniform), then

PS(xn1 ) ∝
∑

rm
1 ∈G(xn

1 )
PD|M (rm1 )

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

PR(ri)

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

PR(vi → βi)

=
∑

rm
1 ∈G(xn

1 )

m∏
i=1

θvi→βi

where ri corresponds to vi → βi

Challenge: to express G(xn1 ) a task called parsing
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Maximum likelihood estimation

We have a treebank, that is, a corpus where
I a sentence xn1 is annotated with its CFG tree rm1

Our distributions PRHS|LHS are categorical
I RHS | LHS = v ∼ Cat(θ(v))

MLE solution?

θv→β = countR(v → β)∑
β′ countR(v → β′) = countR(v → β)

countLHS(v)
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MLE - Example
Consider the treebank

S

VP

V

runs

NP

N

dog

D

the

S

VP

V

run

NP

N

cats

S

VP

V

run

NP

NP

N

dogs

CC

and

NP

N

cats

I θNP→N
I θN→dog
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